

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-10/0169 vom 14. Juli 2020

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Upat Expressanker IMC

Mechanischer Dübel zur Verankerung im Beton

Upat Vertriebs GmbH Bebelstraße 11 79108 Freiburg im Breisgau DEUTSCHLAND

Upat

14 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-01-0601, Edition 12/2019

ETA-10/0169 vom 22. August 2017

Europäische Technische Bewertung ETA-10/0169

Seite 2 von 14 | 14. Juli 2020

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-10/0169

Seite 3 von 14 | 14. Juli 2020

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Upat Expressanker IMC ist ein Dübel aus galvanisch verzinktem, feuerverzinktem oder nichtrostendem Stahl, der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Die Produktbeschreibung ist in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 3, C 1
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 2
Verschiebungen (statische und quasi-statische Einwirkungen)	Siehe Anhang C 3
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Leistung nicht bewertet
Dauerhaftigkeit	Siehe Anhang B 1

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Leistung nicht bewertet

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330232-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

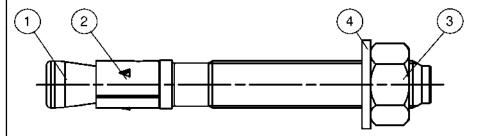
Folgendes System ist anzuwenden: 1

Europäische Technische Bewertung ETA-10/0169

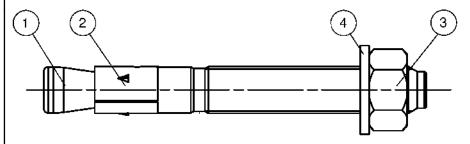
Seite 4 von 14 | 14. Juli 2020

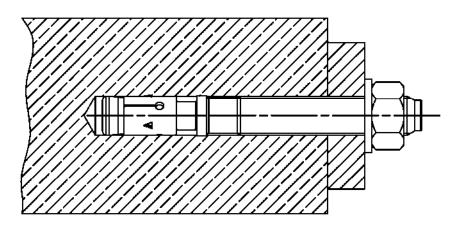
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 14. Juli 2020 vom Deutschen Institut für Bautechnik

Dr.-Ing. Lars Eckfeldt i.V. Abteilungsleiter

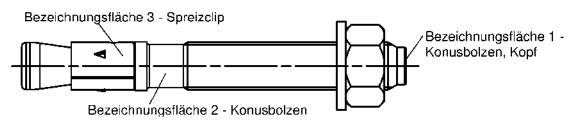

Beglaubigt: Baderschneider


Konusbolzen, kaltumgeformte Ausführung:

Konusbolzen, spanend hergestellte Ausführung:

- ① Konusbolzen (kaltmassivumgeformt oder gedreht)
- ② Spreizclip
- 3 Sechskantmutter
- 4 Unterlegscheibe

(Abbildungen nicht maßstäblich)

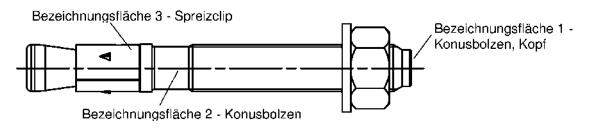

Upat Expressanker IMC

Produktbeschreibung
Einbauzustand

Anhang A 1

IMC für Standard- und reduzierte Verankerungstiefe (hef, sta und hef, red)

Produktkennzeichnung, Beispiel: U-IMC


Firmenkennung | Dübeltyp — auf Bezeichnungsfläche 2 oder 3

Gewindegröße / max. Dicke des Anbauteils (tīx) für hef, sta Kennzeichnung R oder HDG auf Bezeichnungsfläche 2

Tabelle A2.1: Buchstabencode auf Bezeichnungsfläche 1 und maximal zulässige Dicke des Anbauteils t_{fix} [mm]:

Markierung		Α	В	С	D	Е	F	G	Н	1	K	L	М	N	0	Ρ	R	S	T	U	٧	W	Χ	Υ	Ζ
max. t _{fix} für h _{ef, sta}	M6-M20	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M8, M10	15	20	25	30	35	40	45	50	55	60	70	80	90	100	110	130	150	170	190	210	260	310	360	410
max. t _{fix}	M12, M16	20	25	30	35	40	45	50	55	60	65	75	85	95	105	115	135	155	175	195	215	265	315	365	415
für h _{el, red}	M20	30	35	40	45	50	55	60	65	70	75	85	95	105	115	125	145	165	185	205	225	275	325	375	425

IMC K nur für reduzierte Verankerungstiefe (hef, red):

Produktkennzeichnung, Beispiel: U-IMC 12/10 K R

Firmenkennung | Dübeltyp Gev Ken

Gewindegröße / max. Dicke des Anbauteils (tiix)

Kennzeichnung K für hef, red

Kennzeichnung R oder HDG auf Bezeichnungsfläche 2

Tabelle A2.2: Buchstabencode auf Bezeichnungsfläche 1 und maximal zulässige Dicke des Anbauteils t_{fix} [mm]:

Markierung	-A-	-B-	-C-	-D-	-E-	-F-	-G-	-H-	- -	-K-	-L-	-M-	-N-	-0-	-P-	-R-	-S-	-T-	-U-	-V-	-W-	-X-	-Y-	-Z-
max. t _{fix} für h _{ef, red} M8-M20	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400

Die Identifikation von hel, red erfolgt über die Buchstabenkennung zwischen den 2 Bindestrichen

(Abbildungen nicht maßstäblich)

Upat Expressanker IMC

Produktbeschreibung

Produktkennzeichnung und Buchstabenkürzel

Anhang A 2

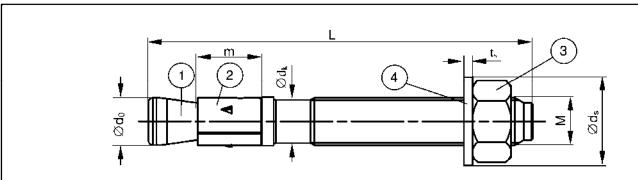


Tabelle A3.1: Dübelabmessungen [mm]

Tail	Dozeishnung			IMC, IMC R							
Teil	Bezeichnung			M6	М8	M10	M12	M16	M20		
		М	_	M6	M8	M10	M12	M16	M20		
1	Konusbolzen	$\varnothing d_0$		5,9	7,9	9,9	11,9	15,9	19,6		
		Ø d _k	_ =	5,2	7,1	8,9	10,8	14,5	18,2		
2	Spreizclip	m	_	10	11,5	13,5	16,5	21,5	33,5		
3	Sechskantmutter	SW		10	13	17	19	24	30		
4	Unterlegscheibe	ts		1,0	1,4	1,8	2,3	2,7	2,7		
4	Ontenegscheibe	Ø d₅	- ≥	11,5	15	19	23	29	36		
Dicke des A	Anhoutoila	+	≥	0	0	0	0	0	0		
Dicke des A	Andautens	t fix	<u></u>	200	200	250	300	400	500		
Düballässa		Lmin	_	45	56	71	86	120	139		
Dübellänge		L _{rnax}	_ =	245	261	316	396	520	654		

(Abbildungen nicht maßstäblich)

Upat Expressanker IMC

Produktbeschreibung Abmessungen Anhang A 3

Teil	Bezeichnung	Material
1	Konusbolzen	Kaltstauchstahl oder Automatenstahl
2	Spreizclip	Kaltband, EN 10139:2016 1)
3	Sechskantmutter	Stahl, Festigkeitsklasse min. 8, EN ISO 898-2:2012
4	Unterlegscheibe	Kaltband, EN 10139:2013

¹⁾ Optional nichtrostender Stahl EN 10088:2014

Tabelle A4.2: Materialien IMC HDG (feuerverzinkt ≥ 50μm, ISO 10684:2004 ¹))

Teil	Bezeichnung	Material
1	Konusbolzen	Kaltstauchstahl oder Automatenstahl
2	Spreizclip	Nichtrostender Stahl EN 10088:2014
3	Sechskantmutter	Stahl, Festigkeitsklasse min. 8, EN ISO 898-2:2012
4	Unterlegscheibe	Kaltband, EN 10139:2016

¹⁾ Alternative Methode sherardisiert ≥ 50 μm, EN 13811:2003

Tabelle A4.3: Materialien IMC R

Teil	Bezeichnung	Material
1	Konusbolzen	Nichtrostender Stahl EN 10088:2014
2	Spreizclip	Nichtrostender Stahl EN 10088:2014
3	Sechskantmutter	Nichtrostender Stahl EN 10088:2014 ISO 3506-2: 2009; Festigkeitsklasse min. 70
4	Unterlegscheibe	Nichtrostender Stahl EN 10088:2014

Upat Expressanker IMC

Produktbeschreibung
Materialien

Anhang A 4

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

Expressar	ker IMC, IMC R		M6 ¹⁾	M8 ¹⁾	M10	M12	M16	M20				
	Stahl	✓										
ji Bi	Starii	Feuerverzinkt HDG	_2)			/						
Material	Nichtrostender Stahl	R			į	✓						
Statische	und quasi-statische	Belastungen				/						
Reduzierte	e Verankerungstief	Э	_2)			/						
Ungerisse	ner Beton					/						

¹⁾ Die Verwendung für IMC 6 (gvz/R) und IMC 8 (gvz/HDG/R) mit jeweils hef = 30mm ist auf statisch unbestimmte Bauteile beschränkt

Verankerungsgrund:

 Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A1:2016

Anwendungsbedingungen (Umweltbedingungen):

· Bauteile unter den Bedingungen trockener Innenräume:

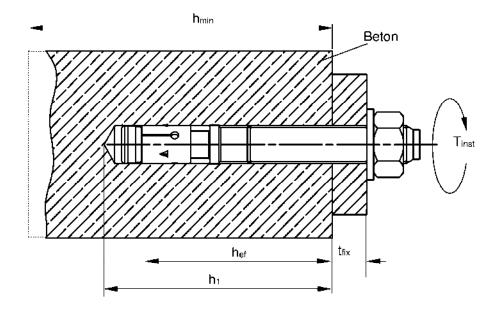
IMC, IMC HDG

IMC R

 Für alle anderen Bedingungen nach EN 1993-1-4:2015-10, entsprechend Korrosionsbeständigkeitsklassen CRC III:

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden pr
 üfbare Berechnungen und
 Konstruktionszeichnungen angefertigt. In den Konstruktionszeichnungen ist die Position der D
 übel
 anzugeben (z. B. Lage des D
 übels zur Bewehrung oder zu den Auflagern usw.)
- Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und TR 055


Upat Expressanker IMC	
Verwendungszweck Spezifikation	Anhang B 1

²⁾ Dübelvariante nicht Bestandteil der ETA

Tabelle B2.1: Montageke	nnwerte	=						
Dübeltyp / Größe IMC ,	IMC R		M6	M8	M10	M12	M16	M20
Nomineller Bohrdurchmesser	d ₀ =	,	6	8	10	12	16	20
Schneidendurchmesser des Bohrers	d _{cut} ≤	_	6,45	8,45	10,45	12,50	16,50	20,55
Standard Verankerungstiefe	h _{ef,sta} =	_	30 ¹⁾	40	50	65	80	105
Reduzierte Verankerungstiefe	$h_{\text{ef,red}} =$	[mm]	_2)	30 ¹⁾	40	50	65	80
Standard Bohrlochtiefe	hı,sta ≥	-	40	56	68	85	104	135
Reduzierte Bohrlochtiefe	h₁,red ≥	-	_2)	46 ¹⁾	58	70	89	110
Durchmesser des Durchgangslochs im Anbauteil	d₁ ≤	-	7	9	12	14	18	22
Montagedrehmoment IMC (verzinkt)	_	,	4	15	30	50	100	200
Montagedrehmoment IMC (feuerverzinkt)	T _{inst} =	[Nm]	_3)	15	30	40	70	200
Montagedrehmoment IMC R	_		4	10	20	35	80	150

- 1) Die Verwendung ist auf statisch unbestimmte Bauteile beschränkt
- 2) Leistung nicht bewertet
- 3) Dübelvariante nicht Bestandteil der ETA

her = Effektive Verankerungstiefe

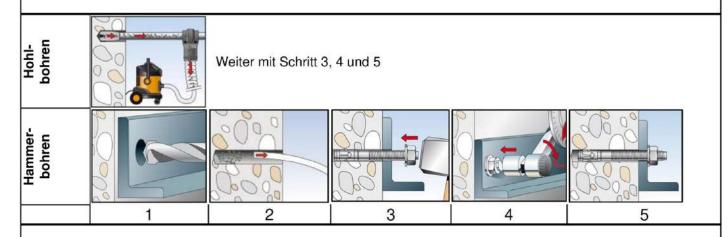
t_{fix} = Dicke des Anbauteils

h₁ = Bohrlochtiefe am tiefsten Punkt h_{min} = Minimale Dicke des Betonbauteils

Tinst = Montagedrehmoment

(Abbildungen nicht maßstäblich)

Upat Expressanker IMC	
Verwendungszweck Montageparameter	Anhang B 2



Montageanleitung

- · Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- · Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist, als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten
- · Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume
- Hammer- oder Hohlbohren.

Nr.

- Bohrloch senkrecht +/- 5° zur Oberfläche des Verankerungsgrundes erstellen, ohne die Bewehrung zu beschädigen
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt

1	Bohrloch erstellen mit Hammerbohrer	Bohrloch erstellen mit Hohlbohrer und Staubsauger					
2	Bohrloch reinigen	-					
3		Anker setzen					
4	Anker mit dem vorgeschrieber	nen Montagedrehmoment verspreizen T _{inst}					
5	Abges	Abgeschlossene Montage					
	Bohrerarten						
Hammerboh	nrer						
Hohlbohre	er T						

Beschreibung

Upat Expressanker IMC	
Verwendungszweck Montageanleitung	Anhang B 3

Tabelle C1.1: Charakteristische Werte der **Zugtragfähigkeit** unter statischer und quasi - statischer Belastung

Dübeltyp / Größe			M6	M8	M10	M12	M16	M20		
Stahlversagen für Standardveranker	ungstiefe	e und redu	ızierte Ve	rankerun	gstiefe IN	IC				
Charakteristischer Widerstand IMC	$N_{Rk,s}$	[kN]	8,3	16,5	27,2	41,6	77,9	107		
Teilsicherheitsbeiwert	γMs ¹⁾	[-]	1,5	1,4	1,4	1,4	1,5	1,5		
Stahlversagen für Standardveranker	e und redu	ızierte Ve	rankerun	gstiefe IN	IC R					
Charakteristischer Widerstand IMC R	$N_{Rk,s}$	[kN]	10,6	16,5	27,2	41,6	78	111		
Teilsicherheitsbeiwert	γMs ¹⁾	[-]	1,5	1,4	1,4	1,4	1,4	1,5		
Herausziehen für Standardverankeru	ungstiefe	IMC, IMC	R							
Charakteristischer Widerstand C20/25	$N_{Rk,p}$	[kN]	64)	12,5	17,4	25,8	35,2	52,9		
Herausziehen für reduzierte Veranke	rungstie	fe IMC, IM	CR							
Charakteristischer Widerstand C20/25	$N_{Rk,p}$	[kN]	_5)	64)	12,5	17,4	25,8	35,2		
		C25/30			1,	12				
		C30/37		1,22						
Erhöhungsfaktoren für N _{Rk,p}	N//	C35/45	1,32							
Emonungstaktoren für NRK,p	Ψc	C40/50	1,41							
		C45/55	1,50							
		C50/60	1,58							
Montagebeiwert	γinst	[-]			1,	,0				
Betonausbruch und Spalten für Star	ndardvera									
Effektive Verankerungstiefe	h _{ef, sta}	[mm]	304)	40	50	65	80	105		
Faktor für ungerissenen Beton	k _{ucr,N}	[-]				,02)				
Achsabstand	Scr,N	_				ef, sta				
Randabstand	C _{cr} ,N	– [mm]				ef, sta				
Achsabstand (Spalten)	Scr,sp	_	1304)	190	200	290	350	370		
Randabstand (Spalten)	C _{cr,sp}		65 ⁴⁾	95	100	145	175	185		
Charakteristischer Widerstand gegen	N^0 _{Rk,sp}	[kN]			min {N ⁰ _{Rk}	k,c, N _{Rk,p} } ³⁾				
Spalten					[14 15	ν,υ, τ την,ρ				
Betonausbruch und Spalten für redu										
Effektive Verankerungstiefe	h _{ef. red}	[mm]	_ 5)	30 ⁴⁾	40	50	65	80		
Faktor für ungerissenen Beton	K _{ucr,N}	<u>[-]</u>				,0 ²⁾				
Achsabstand	S _{cr,N}	_				ef, red				
Randabstand	C _{cr} ,N	– [mm]				lef, red				
Achsabstand (Spalten) Randabstand (Spalten)	Scrisp	_ []	_5)	1904)	200	290	350	370		
	C _{cr,sp}		_5)	95 ⁴⁾	100	145	175	185		

¹⁾ Sofern andere nationale Regelungen fehlen

Upat Expressanker IMC	
Leistungen Charakteristische Zugtragfähigkeit	Anhang C 1

²⁾ Bezogen auf Betondruckfestigkeit als Zylinderdruckfestigkeit

³⁾ N⁰_{Rk.c} nach EN 1992-4:2018

⁴⁾ Die Verwendung ist auf statisch unbestimmte Bauteile beschränkt

⁵⁾ Leistung nicht bewertet

Tabelle C2.1: Charakteristische Werte der Quertragfähigkeit unter statischer und quasi - statischer Belastung									
Dübeltyp / Größe				М6	M8	M10	M12	M16	M20
Montagebeiwert		γinst	[-]			1	,0		
Stahlversagen ohne Hebelarn	n für Stand	lardveranl	kerungstie	fe und re	eduzierte	Verank	erungsti	efe	
Charakteristischer	IMC	— V ⁰ Rk.s	[kN]	6,02)	13,3	21,0	31,3	55,1	67
Widerstand	IMC R	V Rk,s	נאואן	5,3 ²⁾	12,8	20,3	27,4	51	86
Stahlversagen mit Hebelarm t	ür Standaı	rdveranke	rungstiefe						
Charakteristisches	IMC	— М ⁰ _{Вk.s}	M ⁰ _{Rk,s} [Nm]	9,42)	26,2	52,3	91,6	232,2	422
Biegemoment	IMC R	IVI*Rk,s	נואוון	82)	26	52	85	216	454
Stahlversagen mit Hebelarm t	ür reduzie	rte Veranl	kerungstie	fe					
Charakteristisches	IMC	— M ⁰ Rk.s	[Nm]	_3)	19,92)	45,9	90,0	226,9	349
Biegemoment	IMC R	IVI*Rk,s	נואווון	_3)	21 ²⁾	47	85	216	353
Teilsicherheitsbeiwert Stahlvers	agen	γ Ms $^{1)}$	— [-]	1,25					
Faktor für Duktilität		k ₇	[-]			1	,0		
Betonausbruch auf der lastab	gewandte	n Seite füi	r Standard	veranke	rungstief	fe IMC, II	MC R		
Faktor für Pryoutversagen		k ₈	[-]	1,4	1,8	2,1	2,3	2,3	2,3
Betonausbruch auf der lastab	gewandte	n Seite füi	r reduziert	e Verank	erungsti	efe IMC,	IMC R		
Faktor für Pryoutversagen		k ₈	[-]	_3)	1,8	2,1	2,3	2,3	2,3
Betonkantenbruch für Standa	rdveranke	rungstiefe	MC, IMC	R					
Effektive Verankerungslänge		$I_{f,sta}$	_ [mm]	302)	40	50	65	80	105
Dübeldurchmesser d _{nom}		— [mm]	6	8	10	12	16	20	
Betonkantenbruch für reduzierte Verankerungstiefe IMC, IMC R									
Effektive Verankerungslänge		I _{f,red}	[mm]	_3)	30 ²⁾	40	50	65	80
Dübeldurchmesser		d _{nom}	— [mm]	_3)	8	10	12	16	20

Upat Expressanker IMC	
Leistungen Charakteristische Quertragfähigkeit	Anhang C 2

Sofern andere nationale Regelungen fehlen
 Die Verwendung ist auf statisch unbestimmte Bauteile beschränkt
 Leistung nicht bewertet

Tabelle C3.1: Mindestdicke der Betonbauteile, minimale Achs- und Randabstände

	Dübeltyp / Größe IMC, IMC	R		М6	М8	M10	M12	M16	M20
, b	Effektive Verankerungstiefe	h _{ef. sta}		302)	40	50	65	80	105
pur	Mindestbauteildicke	h _{min}		100	100	100	120	160	200
Standard Verankerung tiefe	Minimaler Achsabstand	Smin	[mm]	40	40	50 (70¹)	70	90 (120¹)	120
Vers	Minimaler Randabstand	Cmin		40	40 (45 ¹⁾)	50 (55 ¹⁾)	70	90 (80¹)	120
'n	Effektive Verankerungstiefe	h _{ef, red}		_3)	302)	40	50	65	80
arte Ling	Mindestbauteildicke	h _{min}		_3)	100	100	100	120	160
Reduzierte Verankerungs- tiefe	Minimaler Achsabstand	Smin	[mm]	_3)	40 (50 ¹⁾)	50	70	90	120 (140¹¹)
Ker &	Minimaler Randabstand	Cmin		_3)	40 (45 ¹⁾)	80	100	120	120

¹⁾ Werte für IMC R

Tabelle C3.2: Verschiebungen unter statischer und quasi - statischer Zuglast

Dübeltyp / Größe IMC, IMC R	М6	М8	M10	M12	M16	M20		
Standardverankerungstiefe	h _{ef, sta} [mm]	30	40	50	65	80	105	
Zuglast C20/25	N [kN]	2,8	6,1	8,5	12,6	17,2	25,8	
Vorgebiebungen	δ _{N0}	1,9	0,6	0,9	1,5 (1,9 ¹⁾)	1,8	1,8 (2,0 ¹⁾)	
Verschiebungen	[mm]	3,1 (2,71)						
Reduzierte Verankerungstiefe	h _{ef, red} [mm]	_2)	30	40	50	65	80	
Zuglast C20/25	N [kN]	_2)	2,8	6,1	8,5	12,6	17,2	
Varaabiahungan	διο [mm]	/	0,4	0,7	0,7	0,9	1,0	
Verschiebungen	$\frac{\delta N \sigma}{\delta N \infty}$ [mm]			1	,6 (1,71)			

¹⁾ Werte für IMC R

Tabelle C3.3: Verschiebungen unter statischer und quasi - statischer Querlast

Dübeltyp / Größe IMC, IMC R			M6	M8	M10	M12	M16	M20
Querlast IMC	٧	[kN]	3,4	7,6	12,0	17,9	31,5	38,2
Verachishungen IMC	δνο	_ [mm]	0,7	1,5	1,6	2,0	3,0	2,6
Verschiebungen IMC	δν∞	— [mm]	1,1	2,3	2,4	3,0	4,5	3,9
Querlast IMC R	٧	[kN]	3,0	7,3	11,6	15,7	29,1	49,0
Versehiebungen IMC B	δνο	— [mm]	1,5	1,4	2,1	2,6	2,7	4,6
Verschiebungen IMC R	δν∞	[[[]]]	2,3	2,2	3,2	3,9	4,1	7,0

Upat Expressanker IMC	
Leistungen Mindestdicke der Betonbauteile, minimale Achs- und Randabstände Verschiebungen aufgrund von Zug- und Querlasten	Anhang C 3

²⁾ Die Verwendung ist auf statisch unbestimmte Bauteile beschränkt

³⁾ Leistung nicht bewertet

²⁾ Leistung nicht bewertet