

DE

LEISTUNGSERKLÄRUNG

1. Eindeutiger Kenncode des Produkttyps:

DoP 0203

für Upat Express Anker IMC (Mechanischer Dübel für den Einsatz in Beton)

DoP 0203

2. Verwendungszweck(e): Nachträgliche Befestigung in ungerissenem Beton. Siehe Anhang, insbesondere die Anhänge B1

Upat Vertriebs GmbH, Bebelstraße 11, 79108 Freiburg im Breisgau, Deutschland 3. Hersteller:

4. Bevollmächtigter:

5. AVCP - System/e: 1

EAD 330232-01-0601, (Edition 12/ 2019) 6. Europäisches Bewertungsdokument:

Europäische Technische Bewertung: ETA-10/0169; 2020-07-14

DIBt- Deutsches Institut für Bautechnik Technische Bewertungsstelle: Notifizierte Stelle(n): 1343 MPA Darmstadt / 2873 TU Darmstadt

7. Erklärte Leistung(en):

Mechanische Festigkeit und Standsicherheit (BWR 1)

Charakteristischer Widerstand bei Zugbelastung Widerstand für Stahlversagen: Anhang C1 E_S= 210 000 MPa

(statische und quasi-statische Belastung): Widerstand für Herausziehen: Anhang C1

Widerstand für kegelförmigen Betonausbruch: Anhang C1 k_{cr,N}= NPD

Robustheit: Anhang C1

Minimaler Rand- und Achsabstand: Anhana C3

Randabstand zur Vermeidung von Spaltversagen Anhang C1

bei Belastung:

Charakteristischer Widerstand bei Querbelastung Widerstand für Stahlversagen (Querbelastung): Anhang C2 (statische und quasi-statische Belastung), Methode Widerstand für Pry-out Versagen: Anhang C2

NPD Charakteristische Widerstände und Verschiebungen Widerstand Zugbelastung, Verschiebungen

für die seismischen Leistungskategorien C1 und C2: Kategorie C1: Widerstand Zugbelastung, Verschiebungen, NPD

Kategorie C2:

Widerstand Querbelastung, Verschiebungen, NPD

Kategorie C1:

Widerstand Querbelastung, Verschiebungen, NPD Kategorie C2:

Faktor Ringspalt: NPD

NPD Charakkteristischer Widerstand vereinfachte Methode B: Bemessungsmethoden:

NPD Methode C:

Verschiebungen und Dauerhaftigkeit: Verschiebungen bei statischer und quasi-statischer Anhang C3

Belastung:

Dauerhaftigkeit: Anhänge A4, B1

Sicherheit im Brandfall (BWR 2)

Brandverhalten: Klasse (A1) Feuerwiderstand:

Feuerwiderstand, Stahlversagen (Zugbelastung): NPD Feuerwiderstand, Herausziehen (Zugbelastung): NPD NPD Feuerwiderstand, Stahlversagen (Querbelastung):

Fischer DATA DOP_ECs_V27.xlsm 1/2

8. <u>Angemessene Technische Dokumentation und/oder Spezifische Technische Dokumentation:</u>

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung/den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

ppa. The Myr Thilo Pregartner, Dr.-Ing.

Peter Schillinger, Dipl.-Ing.

i.V. P. Sot

Tumlingen, 2020-07-27

Diese Leistungserklärung wurde in mehreren Sprachen erstellt. Für alle Streitigkeiten, die sich aus der Auslegung ergeben, ist die Fassung in englischer Sprache maßgeblich.

Der Anhang enthält freiwillige und ergänzende Informationen in englischer Sprache, die über die (sprachneutral festgelegten) gesetzlichen Anforderungen hinausgehen.

Fischer DATA DOP_ECs_V27.xlsm 2/2

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Upat Expressanker IMC ist ein Dübel aus galvanisch verzinktem, feuerverzinktem oder nichtrostendem Stahl, der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Die Produktbeschreibung ist in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

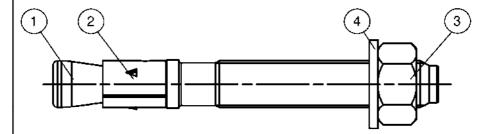
Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

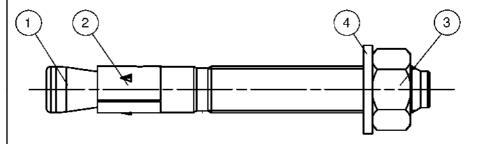
3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 3, C 1
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 2
Verschiebungen (statische und quasi-statische Einwirkungen)	Siehe Anhang C 3
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Leistung nicht bewertet
Dauerhaftigkeit	Siehe Anhang B 1

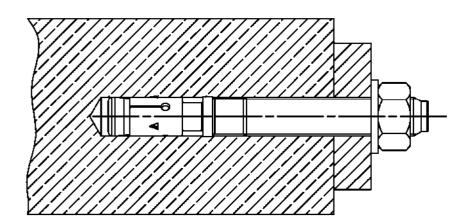
3.2 Brandschutz (BWR 2)


Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Leistung nicht bewertet

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage


Gemäß dem Europäischen Bewertungsdokument EAD 330232-01-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

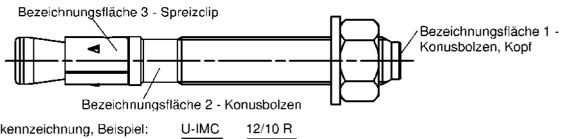

Konusbolzen, kaltumgeformte Ausführung:

Konusbolzen, spanend hergestellte Ausführung:

- ① Konusbolzen (kaltmassivumgeformt oder gedreht)
- ② Spreizclip
- 3 Sechskantmutter
- ④ Unterlegscheibe

(Abbildungen nicht maßstäblich)

Upat Expressanker IMC


Produktbeschreibung

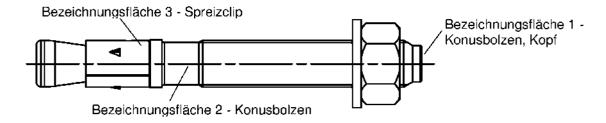
Einbauzustand

Anhang A 1

Appendix 2/11

IMC für Standard- und reduzierte Verankerungstiefe (hef, sta und hef, red)

Produktkennzeichnung, Beispiel: U-IMC


Firmenkennung | Dübeltyp — auf Bezeichnungsfläche 2 oder 3

-Gewindegröße / max. Dicke des Anbauteils (t_{lix}) für h_{ef, sta} Kennzeichnung R oder HDG auf Bezeichnungsfläche 2

Tabelle A2.1: Buchstabencode auf Bezeichnungsfläche 1 und maximal zulässige Dicke des Anbauteils t_{fix} [mm]:

Markierung		Α	В	С	D	Е	F	G	Н	1	K	L	М	N	0	Ρ	R	S	T	U	٧	W	χ	Υ	Ζ
max. t _{fix} für h _{ef, sta}	M6-M20	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M8, M10	15	20	25	30	35	40	45	50	55	60	70	80	90	100	110	130	150	170	190	210	260	310	360	410
max. t _{fix}	M12, M16	20	25	30	35	40	45	50	55	60	65	75	85	95	105	115	135	155	175	195	215	265	315	365	415
für h _{el, red}	M20	30	35	40	45	50	55	60	65	70	75	85	95	105	115	125	145	165	185	205	225	275	325	375	425

IMC K nur für reduzierte Verankerungstiefe (hef, red):

12/10 K R

Produktkennzeichnung, Beispiel: U-IMC

Firmenkennung | Dübeltyp

auf Bezeichnungsfläche 2 oder 3

Gewindegröße / max. Dicke des Anbauteils (tfix)

Kennzeichnung K für hef, red

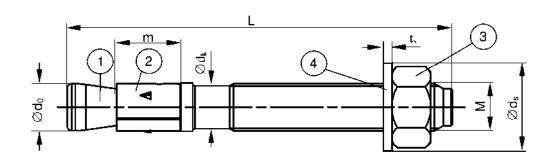
Kennzeichnung R oder HDG auf Bezeichnungsfläche 2

Tabelle A2.2: Buchstabencode auf Bezeichnungsfläche 1 und maximal zulässige Dicke des Anbauteils t_{fix} [mm]:

Markierung	-A-	-B-	-C-	-D-	-E-	-F-	-G-	-H-	- -	-K-	- L-	-M-	-N-	-0-	-P-	-R-	-S-	- T-	-U-	-V-	-W-	-X-	-Y-	-Z-
max. t _{fix} für h _{ef, red} M8-M20	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400

Die Identifikation von hel, red erfolgt über die Buchstabenkennung zwischen den 2 Bindestrichen

(Abbildungen nicht maßstäblich)


Upat Expressanker IMC

Produktbeschreibung

Produktkennzeichnung und Buchstabenkürzel

Anhang A 2

Appendix 3/11

Tabelle A3.1: Dübelabmessungen [mm]

Teil	Dozajahawaa					IMC,	IMC R		
l ten	Bezeichnung	Dezeloillung				M10	M12	M16	M20
		М	_	M6	M8	M10	M12	M16	M20
1	Konusbolzen	Ø d₀		5,9	7,9	9,9	11,9	15,9	19,6
		Ø d _k	_ =	5,2	7,1	8,9	10,8	14,5	18,2
2	Spreizclip	m	_	10	11,5	13,5	16,5	21,5	33,5
3	Sechskantmutter	SW	_	10	13	17	19	24	30
4	Unterlegecheibe	ts		1,0	1,4	1,8	2,3	2,7	2,7
4	Unterlegscheibe	Ø ds	- ≥	11,5	15	19	23	29	36
Dicke des A	l aboutaila	.	≥	0	0	0	0	0	0
Dicke des A	Midautelis	t fix	<u></u>	200	200	250	300	400	500
Dübəlləsəs	Nihallänga.	Lmin		45	56	71	86	120	139
Dübellänge		L _{max}	_ =	245	261	316	396	520	654

(Abbildungen nicht maßstäblich)

Upat Expressanker IMC

Produktbeschreibung Abmessungen Anhang A 3

Appendix 4/ 11

Tabelle A4.1: Materialien IMC (verzinkt $\geq 5\mu m$, ISO 4042:2018)

Teil	Bezeichnung	Material
1	Konusbolzen	Kaltstauchstahl oder Automatenstahl
2	Spreizclip	Kaltband, EN 10139:2016 1)
3	Sechskantmutter	Stahl, Festigkeitsklasse min. 8, EN ISO 898-2:2012
4	Unterlegscheibe	Kaltband, EN 10139:2013

¹⁾ Optional nichtrostender Stahl EN 10088:2014

Tabelle A4.2: Materialien IMC HDG (feuerverzinkt ≥ 50μm, ISO 10684:2004 ¹))

Teil	Bezeichnung	Material
1	Konusbolzen	Kaltstauchstahl oder Automatenstahl
2	Spreizclip	Nichtrostender Stahl EN 10088:2014
3	Sechskantmutter	Stahl, Festigkeitsklasse min. 8, EN ISO 898-2:2012
4	Unterlegscheibe	Kaltband, EN 10139:2016

 $^{^{1)}}$ Alternative Methode sherardisiert $\geq 50~\mu m,~EN~13811:2003$

Tabelle A4.3: Materialien IMC R

Teil	Bezeichnung	Material Material
1	Konusbolzen	Nichtrostender Stahl EN 10088:2014
2	Spreizclip	Nichtrostender Stahl EN 10088:2014
3	i Sachekanimilitar	Nichtrostender Stahl EN 10088:2014 ISO 3506-2: 2009; Festigkeitsklasse min. 70
4	Unterlegscheibe	Nichtrostender Stahl EN 10088:2014

Upat Expressanker IMC

Produktbeschreibung Materialien Anhang A 4

Appendix 5/11

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

Expressar	ker IMC, IMC R		M6 ¹⁾	M8 ¹⁾	M10	M12	M16	M20			
	Stahl	Verzinkt		✓							
<u>.</u>	Starii	Feuerverzinkt HDG	_2)			/		100			
Material	Nichtrostender Stahl	R				✓					
Statische	und quasi-statische	Belastungen				/					
Reduzierte	e Verankerungstiefe	_2)	,		/						
Ungerisse	ner Beton					/					

¹⁾ Die Verwendung für IMC 6 (gvz/R) und IMC 8 (gvz/HDG/R) mit jeweils hef = 30mm ist auf statisch unbestimmte Bauteile beschränkt

Verankerungsgrund:

 Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern der Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013+A1:2016

Anwendungsbedingungen (Umweltbedingungen):

Bauteile unter den Bedingungen trockener Innenräume:

IMC, IMC HDG

 Für alle anderen Bedingungen nach EN 1993-1-4:2015-10, entsprechend Korrosionsbeständigkeitsklassen CRC III:

IMC R

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. In den Konstruktionszeichnungen ist die Position der Dübel anzugeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.)
- Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und TR 055

U	pat	Expressan	ker IIV	lC
---	-----	-----------	---------	----

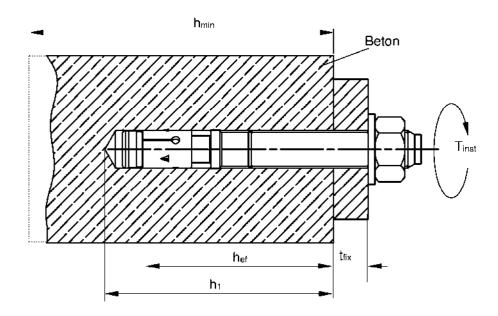

²⁾ Dübelvariante nicht Bestandteil der ETA

Tabelle B2.1: Montagekennwerte	÷
--------------------------------	---

Dübeltyp / Größe IMC,	IMC R		M6	M8	M10	M12	M16	M20
Nomineller Bohrdurchmesser	d ₀ =	,	6	8	10	12	16	20
Schneidendurchmesser des Bohrers	d _{cut} ≤	_	6,45	8,45	10,45	12,50	16,50	20,55
Standard Verankerungstiefe	h _{ef,sta} =		30 ¹⁾	40	50	65	80	105
Reduzierte Verankerungstiefe	$h_{\text{ef,red}} =$	[mm]	_2)	30 ¹⁾	40	50	65	80
Standard Bohrlochtiefe	h₁,sta ≥	-	40	56	68	85	104	135
Reduzierte Bohrlochtiefe	h₁,red ≥	_	_2)	46 ¹⁾	58	70	89	110
Durchmesser des Durchgangslochs im Anbauteil	df ≤	-	7	9	12	14	18	22
Montagedrehmoment IMC (verzinkt)	_		4	15	30	50	100	200
Montagedrehmoment IMC (feuerverzinkt)	T _{inst} =	[Nm]	_3)	15	30	40	70	200
Montagedrehmoment IMC R	_		4	10	20	35	80	150

¹⁾ Die Verwendung ist auf statisch unbestimmte Bauteile beschränkt

³⁾ Dübelvariante nicht Bestandteil der ETA

hef = Effektive Verankerungstiefe

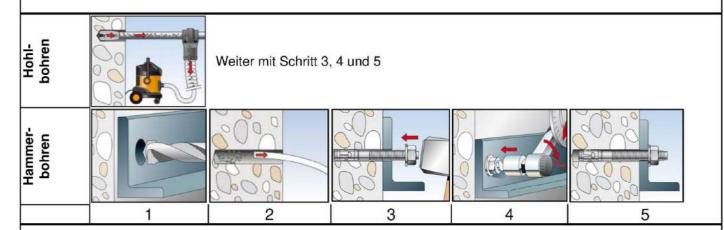
t_{fix} = Dicke des Anbauteils

h₁ = Bohrlochtiefe am tiefsten Punkt h_{min} = Minimale Dicke des Betonbauteils

Tinst = Montagedrehmoment

(Abbildungen nicht maßstäblich)

Upa	t Expre	essanke	er IMC


Verwendungszweck Montageparameter Anhang B 2

Appendix 7/11

²⁾ Leistung nicht bewertet

Montageanleitung

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- · Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist, als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten
- · Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume
- · Hammer- oder Hohlbohren
- Bohrloch senkrecht +/- 5° zur Oberfläche des Verankerungsgrundes erstellen, ohne die Bewehrung zu beschädigen
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt

Nr.	Beschreibung							
1	Bohrloch erstellen mit Hammerbohrer	Bohrloch erstellen mit Hohlbohrer und Staubsauger						
2	Bohrloch reinigen	-						
3	Anker setzen							
4	Anker mit dem vorgeschrieber	nen Montagedrehmoment verspreizen T _{inst}						
5	5 Abgeschlossene Montage							
Bohrerarten								

	Bohrerarten	
Hammerbohrer	B44440000000	
Hohlbohrer		

Upat Expressanker IMC

Verwendungszweck

Montageanleitung

Anhang B 3

Tabelle C1.1: Charakteristische Werte der Zugtragfähigkeit unter statischer und quasi - statischer Belastung

Dübeltyp / Größe		M6	M8	M10	M12	M16	M20			
Stahlversagen für Standardveranker	ungstiefe	e und redเ	ızierte Ve	rankerun	gstiefe IN	IC				
Charakteristischer Widerstand IMC	N _{Rk,s}	[kN]	8,3	16,5	27,2	41,6	77,9	107		
Teilsicherheitsbeiwert	γMs ¹⁾	[-]	1,5	1,4	1,4	1,4	1,5	1,5		
Stahlversagen für Standardveranker	ungstiefe	und redu	ızierte Ve	rankerun	gstiefe IN	IC R				
Charakteristischer Widerstand IMC R	$N_{Rk,s}$	[kN]	10,6	16,5	27,2	41,6	78	111		
Teilsicherheitsbeiwert	γMs ¹⁾	[-]	1,5	1,4	1,4	1,4	1,4	1,5		
Herausziehen für Standardverankeru	ıngstiefe	IMC, IMC	R							
Charakteristischer Widerstand C20/25	$N_{Rk,p}$	[kN]	64)	12,5	17,4	25,8	35,2	52,9		
Herausziehen für reduzierte Veranke	rungstie	fe IMC, IM	CR							
Charakteristischer Widerstand C20/25		[kN]	_5)	6 ⁴⁾	12,5	17,4	25,8	35,2		
		C25/30	1,12							
Erhöhungsfaktoren für N _{Rk,p}		C30/37	1,22							
	216	C35/45	1,32							
Emonangsiaktoren far Nek,p	Ψ¢	C40/50	1,41							
		C45/55	1,50							
		C50/60	1,58							
Montagebeiwert	γinst	[-]	1,0							
Betonausbruch und Spalten für Stan	dardvera			i						
Effektive Verankerungstiefe	h _{ef, sta}	[mm]	304)	40	50	65	80	105		
Faktor für ungerissenen Beton	k _{ucr,N}	[-]				,0 ²⁾				
Achsabstand	Scr,N	_				ef, sta				
Randabstand	C _{cr,N}	– [mm]				lef, sta				
Achsabstand (Spalten)	Scr,sp	_ []	1304)	190	200	290	350	370		
Randabstand (Spalten)	C _{cr,sp}		65 ⁴⁾	95	100	145	175	185		
Charakteristischer Widerstand gegen Spalten	$N^0_{Rk,sp}$	[kN]	min {N ⁰ _{Rk,c} , N _{Rk,p} } ³⁾							
Betonausbruch und Spalten für redu	ızierte Ve	rankerun		C, IMC R						
Effektive Verankerungstiefe	h _{ef. red}	[mm]	_5)	30 ⁴⁾	40	50	65	80		
Faktor für ungerissenen Beton	Kuer,N	[-]				,0 ²⁾				
Achsabstand	S _{cr,N}	_			3 h	ef, red				
Randabstand	C _{Cr,} N	– [mm]				lef, red				
Achsabstand (Spalten)	S _{cr,sp}	_ []	_5)	190 ⁴⁾	200	290	350	370		
Randabstand (Spalten)	C _{cr,sp}		_ 5)	95 ⁴⁾	100	145	175	185		

Upat	Expressanker	IMC

Charakteristische Zugtragfähigkeit

Sofern andere nationale Regelungen fehlen
 Bezogen auf Betondruckfestigkeit als Zylinderdruckfestigkeit

³⁾ N⁰_{Rk,c} nach EN 1992-4:2018

⁴⁾ Die Verwendung ist auf statisch unbestimmte Bauteile beschränkt

⁵⁾ Leistung nicht bewertet

Tabelle C2.1: Charakteristische Werte der Quertragfähigkeit unter statischer	und
guasi - statischer Belastung	

Dübeltyp / Größe				M6	M8	M10	M12	M16	M20	
Montagebeiwert		γinst	[-]			1	,0			
Stahlversagen ohne Hebelari	m für Stand	ardveran	kerungstie	fe und re	eduzierte	Veranke	erungsti	efe		
Charakteristischer	IMC	1 /0	[Lek II	6,02)	13,3	21,0	31,3	55,1	67	
Widerstand	IMC R	— V ⁰ Rk,s	[kN]	5,32)	12,8	20,3	27,4	51	86	
Stahlversagen mit Hebelarm	für Standa	rdveranke	rungstiefe)						
Charakteristisches	IMC	NAO	[MIM]	9,42)	26,2	52,3	91,6	232,2	422	
Biegemoment	emoment IMC R	— M ⁰ Rk,s	[Nm]	82)	26	52	85	216	454	
Stahlversagen mit Hebelarm für reduzierte Verankerungstiefe										
Charakteristisches	IMC	— M ⁰ Rk,s	[ml/l]	_3)	19,92)	45,9	90,0	226,9	349	
Biegemoment	IMC R	— IVI°Rk,s	[Nm]	_3)	21 ²⁾	47	85	216	353	
Teilsicherheitsbeiwert Stahlvers	sagen	γMs ¹⁾	[]	1,25						
Faktor für Duktilität				1,0						
Betonausbruch auf der lasta	bgewandte	n Seite fü	r Standard	veranke	rungstief	fe IMC, IN	/IC R			
Faktor für Pryoutversagen		k ₈	[-]	1,4	1,8	2,1	2,3	2,3	2,3	
Betonausbruch auf der lasta	bgewandte	n Seite fü	r reduziert	e Verank	erungsti	efe IMC,	IMC R			
Faktor für Pryoutversagen		k ₈	[-]	_3)	1,8	2,1	2,3	2,3	2,3	
Betonkantenbruch für Standa	ardveranke	rungstiefe	MC, IMC	R						
Effektive Verankerungslänge		$I_{f,sta}$	_ [mm]	302)	40	50	65	80	105	
Dübeldurchmesser		d_{nom}	— [mm]	6	8	10	12	16	20	
Betonkantenbruch für reduzi	ierte Verank	erungstie	efe IMC, IN	IC R						
Effektive Verankerungslänge		I _{f,red}	_ [mm]	_3)	30 ²⁾	40	50	65	80	
Dübeldurchmesser		dnom	— [mm]	_3)	8	10	12	16	20	

Upat Expressanker IMC

Leistungen

Charakteristische Quertragfähigkeit

Anhang C 2

Appendix 10/11

Sofern andere nationale Regelungen fehlen
 Die Verwendung ist auf statisch unbestimmte Bauteile beschränkt
 Leistung nicht bewertet

Tabelle C3.1: Mindestdicke der Betonbauteile, minimale Achs- und Randabstände

Dübeltyp / Größe IMC, IMC R			М6	М8	M10	M12	M16	M20	
'n	Effektive Verankerungstiefe	h _{ef. sta}		30 ²⁾	40	50	65	80	105
Prag.	Mindestbauteildicke	h _{min}		100	100	100	120	160	200
Standard Verankerungs- tiefe	Minimaler Achsabstand	Smin	[mm]	40	40	50 (70¹)	70	90 (120¹¹)	120
Vers	Minimaler Randabstand	Cmin		40	40 (45 ¹⁾)	50 (55 ¹⁾)	70	90 (80¹))	120
'n	Effektive Verankerungstiefe	h _{ef, red}		_3)	302)	40	50	65	80
ung	Mindestbauteildicke	hmin		_3)	100	100	100	120	160
Reduzierte Verankerungs- tiefe	Minimaler Achsabstand	Smin	[mm]	_3)	40 (50¹¹)	50	70	90	120 (140¹)
Ver	Minimaler Randabstand	Cmin	_	_3)	40 (45 ¹⁾)	80	100	120	120

¹⁾ Werte für IMC R

Tabelle C3.2: Verschiebungen unter statischer und quasi - statischer Zuglast

Dübeltyp / Größe IMC, IMC R	М6	М8	M10	M12	M16	M20			
Standardverankerungstiefe	h _{ef, sta}	[mm]	30	40	50	65	80	105	
Zuglast C20/25	N	[kN]	2,8	6,1	8,5	12,6	17,2	25,8	
Vorashishungan	δΝο	[mm]	1,9	0,6	0,9	1,5 (1,9 ¹⁾)	1,8	1,8 (2,01)	
Verschiebungen	n — ∫ _{δν∞} ∣		3,1 (2,71)						
Reduzierte Verankerungstiefe	h _{ef, red}	[mm]	_2)	30	40	50	65	80	
Zuglast C20/25	N	[kN]	_2)	2,8	6,1	8,5	12,6	17,2	
Varabishuman	δνο	δνο []		0,4	0,7	0,7	0,9	1,0	
Verschiebungen	$\frac{\delta N_{\infty}}{\delta N_{\infty}}$ [mm]				1	,6 (1,71)			

¹⁾ Werte für IMC R

Tabelle C3.3: Verschiebungen unter statischer und quasi - statischer Querlast

Dübeltyp / Größe IMC, IMC R			М6	M8	M10	M12	M16	M20
Querlast IMC	٧	[kN]	3,4	7,6	12,0	17,9	31,5	38,2
Verschiebungen IMC	δ_{V0}	[mm]	0,7	1,5	1,6	2,0	3,0	2,6
	δv_{∞}	— [mm]	1,1	2,3	2,4	3,0	4,5	3,9
Querlast IMC R	٧	[kN]	3,0	7,3	11,6	15,7	29,1	49,0
Verschiebungen IMC R	δ_{V0}	[1	1,5	1,4	2,1	2,6	2,7	4,6
	δν∞	— [mm]	2,3	2,2	3,2	3,9	4,1	7,0

Upat Expressanker IMC

Leistungen

Mindestdicke der Betonbauteile, minimale Achs- und Randabstände Verschiebungen aufgrund von Zug- und Querlasten

Anhang C 3

Appendix 11/11

²⁾ Die Verwendung ist auf statisch unbestimmte Bauteile beschränkt

³⁾ Leistung nicht bewertet

²⁾ Leistung nicht bewertet