

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-07/0211 vom 19. Mai 2016

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

fischer Bolzenanker FBN II, FBN II A4

Kraftkontrolliert spreizender Dübel in den Größen M6, M8, M10, M12, M16 und M20 zur Verankerung im ungerissenen Beton

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

14 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 2: "Kraftkontrolliert spreizende Dübel", April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-07/0211

Seite 2 von 14 | 19. Mai 2016

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z30603.16 8.06.01-66/16

Europäische Technische Bewertung ETA-07/0211

Seite 3 von 14 | 19. Mai 2016

Besonderer Teil

1 Technische Beschreibung des Produkts

Der fischer Bolzenanker FBN II und FBN II A4 ist ein Dübel aus galvanisch verzinktem, feuerverzinktem oder nichtrostendem Stahl, der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Produkt und Produktbeschreibung sind in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Werte des Widerstandes gegen Zug- und Querbeanspruchung im Beton	Siehe Anhang C 1 und C 2
Rand- und Achsabstände	Siehe Anhang C 1 und C 2
Verschiebungen unter Zug- und Querbeanspruchung	Siehe Anhang C 3

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Leistung nicht bewertet

3.3 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäische technische Zulassung ETAG 001, April 2013 verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

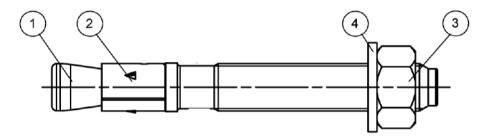
Z30603.16 8.06.01-66/16

Europäische Technische Bewertung ETA-07/0211

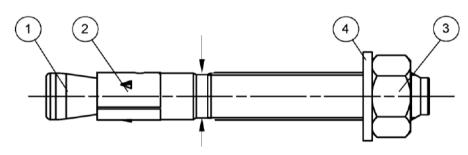
Seite 4 von 14 | 19. Mai 2016

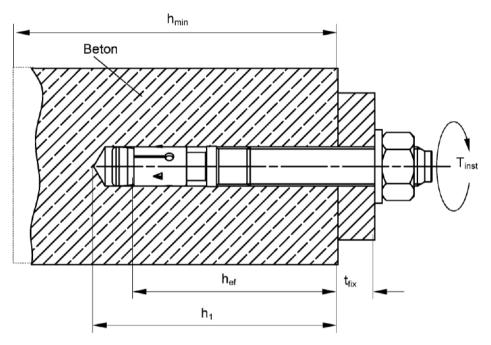
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 19. Mai 2016 vom Deutschen Institut für Bautechnik

Uwe Bender Abteilungsleiter Beglaubigt


Z30603.16 8.06.01-66/16



Konusbolzen, kaltumgeformte Ausführung:

Konusbolzen, spanend hergestellte Ausführung:

- ① Konusbolzen (kaltmassivumgeformt oder gedreht)
- ② Dübelhülse
- 3 Sechskantmutter
- 4 Unterlegscheibe

h_{ef} = Effektive Verankerungstiefe

t_{fix} = Dicke des Anbauteils

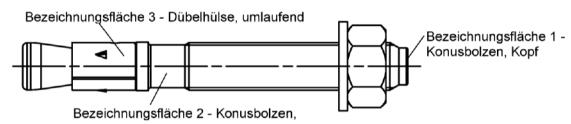
 h_1 = Bohrlochtiefe

h_{min} = Dicke des Betonbauteils

 T_{inst} = Montagedrehmoment

fischer Bolzenanker FBN II, FBN II A4

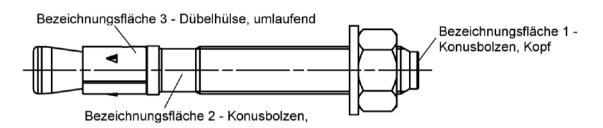
Produktbeschreibung


Einbauzustand

Anhang A 1

8.06.01-66/16

FBN II für Standard- und reduzierte Verankerungstiefe (hef, sta und hef, red)


Werksbezeichnung | Dübeltyp auf Bezeichnungsfläche 2 oder Bezeichnungsfläche 3 Gewindegröße / Dicke des Anbauteils (\mathbf{t}_{fix}) für $\mathbf{h}_{\text{ef, sta}}$ Kennzeichnung A4

auf Bezeichnungsfläche 2

Tabelle A1: Buchstabencode auf Bezeichnungsfläche 1 und maximal zulässige Dicke des Anbauteils t_{fix}:

Markierung	g	Α	В	С	D	Е	F	G	Τ	_	K	ш	М	N	0	Р	R	S	Т	\supset	٧	W	Χ	Υ	Z
max. t _{fix} für h _{ef, sta}	M6-M20	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M8, M10	15	20	25	30	35	40	45	50	55	60	70	80	90	100	110	130	150	170	190	210	260	310	360	410
max. t _{fix}	M12, 16	20	25	30	35	40	45	50	55	60	65	75	85	95	105	115	135	155	175	195	215	265	315	365	415
für h _{ef, red}	M20	30	35	40	45	50	55	60	65	70	75	85	95	105	115	125	145	165	185	205	225	275	325	375	425

FBN II K nur für reduzierte Verankerungstiefe (hef, red):

Werksbezeichnung | Dübeltyp auf Bezeichnungsfläche 2 oder Bezeichnungsfläche 3 Gewindegröße / Dicke des Anbauteils (t_{fix})
 Kennzeichnung K für h_{ef, red} | Kennzeichnung A4 auf Bezeichnungsfläche 2

Tabelle A2: Buchstabencode auf Bezeichnungsfläche 1 und maximal zulässige Dicke des Anbauteils t_{fix}:

Markierung	-A-	-B-	Ċ-	- D-	÷	Ļ	Ģ	누	- -	-K-	÷	-M-	-N-	-0-	-P-	-R-	-Ş-	-T-	÷	-V-	-W-	-X-	-Y-	-Z-
max. t _{fix} für h _{ef, red} M8-M20	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400

Die Identifikation von hef, red erfolgt über die Buchstabenkennung zwischen den 2 Bindestrichen

fischer Bolzenanker FBN II, FBN II A4

Produktbeschreibung
Ankertypen

Anhang A 2

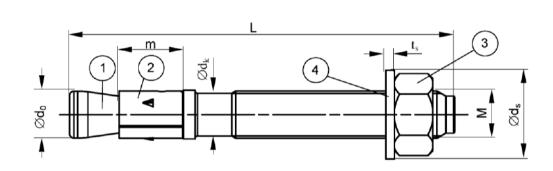


Tabelle A3: Dübelabmessungen [mm]

Teil	Pozoiohnung			FBN II, FBN II A4								
Đ	Bezeichnung			М6	M8	M10	M12	M16	M20			
		М	=	M6	M8	M10	M12	M16	M20			
1	Konusbolzen	$\emptyset d_0$	=	5,9	7,9	9,9	11,9	15,9	19,6			
		$\emptyset d_k$	=	5,2	7,1	8,9	10,8	14,5	18,2			
2	Dübelhülse	m	=	10	11,5	13,5	16,5	21,5	33,5			
3	Sechskantmutter	SW	=	10	13	17	19	24	30			
4	Unterlegecheibe	t _S	≥	1,0	1,4	1,8	2,3	2,7	2,7			
4	Unterlegscheibe	Ø d _s	≥	11,5	15	19	23	29	36			
Dieko	des Anbauteils	4	≥	0	0	0	0	0	0			
Dicke	des Anbauteils	t _{fix}	≤	200	200	250	300	400	500			
Dübella	änge	L_{min}		45	56	71	86	120	139			
Dubella	any e	L_{max}	-	245	261	316	396	520	654			

fischer Bolzenanker FBN II, FBN II A4	
Produktbeschreibung Dübelabmessungen	Anhang A 3

Tabelle A4: Materialien FBN II (verzinkt ≥ 5µm, DIN EN ISO 4042: 2001-01)

Teil	Bezeichnung	Material
1	Konusbolzen	Kaltstauchstahl oder Automatenstahl Nennstahlzugfestigkeit f _{uk} ≤ 1000 N/mm² Nominelle Streckgrenze FBN II 8 - 16 f _{yk} ≥ 560 N/mm² ¹⁾
2	Dübelhülse	Kaltband, EN 10139:2013 ²⁾
3	Sechskantmutter	Stahl, Festigkeitsklasse min. 8, EN ISO 898-2:2012
4	Unterlegscheibe	Kaltband, EN 10139:2013

 $^{^{1)}}$ FBN II 6 $f_{yk}\!\geq$ 480 N/mm², FBN II 20 $f_{yk}\!\geq$ 520 N/mm² $^{2)}$ Optional nichtrostender Stahl EN 10088:2014

Tabelle A5: Materialien FBN II (feuerverzinkt ≥ 50µm, ISO 10684: 2004 2)

Teil	Bezeichnung	Material
1	Konusbolzen	Kaltstauchstahl oder Automatenstahl Nennstahlzugfestigkeit f _{uk} ≤ 1000 N/mm² Nominelle Streckgrenze FBN II 8 - 16 f _{vk} ≥ 560 N/mm² ¹⁾
2	Dübelhülse	nichtrostender Stahl EN 10088:2014
3	Sechskantmutter	Stahl, Festigkeitsklasse min. 8, EN ISO 898-2:2012
4	Unterlegscheibe	Kaltband, EN 10139:2013

Tabelle A6: Materialien FBN II A4

Teil	Bezeichnung	Material
1	Konusbolzen	nichtrostender Stahl EN 10088:2014 Nennstahlzugfestigkeit f _{uk} ≤ 1000 N/mm² Nominelle Streckgrenze FBN II 8 - 20 f _{vk} ≥ 560 N/mm² ¹⁾
2	Dübelhülse	nichtrostender Stahl EN 10088:2014
3	Sechskantmutter	nichtrostender Stahl EN 10088:2014 ISO 3506-2: 2009; Festigkeitsklasse min. 70
4	Unterlegscheibe	nichtrostender Stahl EN 10088:2014

 $^{^{1)}\,\}text{FBN II 6}\;f_{yk}\!\geq 480\;\text{N/mm}^{2}$

fischer Bolzenanker FBN II, FBN II A4 Anhang A 4 Produktbeschreibung Materialien

 $^{^{1)}}$ FBN II 6 $f_{yk}\!\ge$ 480 N/mm², FBN II 20 $f_{yk}\!\ge$ 520 N/mm² $^{2)}$ Alternative Methode sherardisiert \ge 50 $\mu m,$ EN 13811:2003

Angaben zum Verwendungszweck

fisch	er Bolzenanker FBN	II, FBN II A4	M6	M8	M10	M12	M16	M20
	Ctobl	Verzinkt			1			
<u>a</u> .	Stahl —	Feuerverzinkt	175			/		
Material	Nichtrostender Stahl	A4			/			
Stati	sche und quasi-statis	sche Belastungen						
Redu	uzierte Verankerungs				/			
Unge	erissener Beton				/			

Verankerungsgrund:

- Bewehrter und unbewehrter Normalbeton gemäß EN 206-1:2000
- Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206-1:2000

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (FBN II (verzinkt / feuerverzinkt), FBN II A4)
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (FBN II A4). Zu diesen besonders aggressiven Bedingungen gehören, z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln in denen Enteisungsmittel verwendet werden)

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. In den Konstruktionszeichnungen ist die Position der Dübel anzugeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.)
- Verankerungen unter statischer oder quasi-statischer Belastung werden bemessen in Übereinstimmung mit:
 - ETAG 001, Anhang C, Bemessungsverfahren A, Ausgabe August 2010 oder
 - CEN/TS 1992-4:2009, Bemessungsmethode A

Einbau:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- · Hammerbohren oder hohlbohren gemäß Anhang B3
- Im Falle einer Fehlbohrung: Ein neues Bohrloch muss in einem Mindestabstand der doppelten Tiefe der Fehlbohrung erstellt werden, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und nur, wenn die Fehlbohrung nicht in Richtung der Schräg- oder Querlast liegt

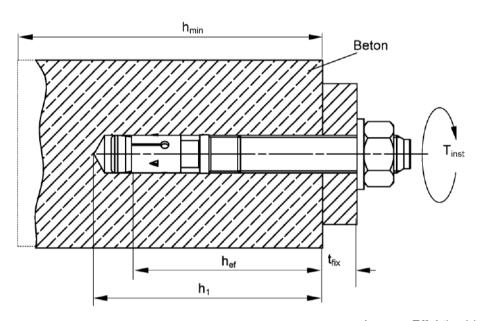

fischer Bolzenanker FBN II, FBN II A4	
Verwendungszweck Bedingungen	Anhang B 1

Tabelle B1: Montagekennwerte

Dübeltyp / Größe FBN II	, FBN I	I A 4	М6	М8	M10	M12	M16	M20
Nomineller Bohrdurchmesser	d ₀ =	[mm]	6	8	10	12	16	20
Schneidendurchmesser des Bohrers	$d_{cut} \leq$	[mm]	6,45	8,45	10,45	12,5	16,5	20,55
Effektive Verankerungstiefe	h _{ef} =	[mm]	30 ²⁾	,	50 (40 ¹⁾)	65 (50 ¹⁾)	80 (65 ¹⁾)	105 (80 ¹⁾)
Bohrlochtiefe in Beton	h₁≥	[mm]	40	56 (46 ^{1) 2)})	68 (58 ¹⁾)	85 (70 ¹⁾)	104 (89 ¹⁾)	135 (110 ¹⁾)
Durchmesser des Durchgangslochs im Anbauteil	$d_f \leq$	[mm]	7	9	12	14	18	22
Montagedrehmoment FBN II (verzinkt)	T _{inst} =	[Nm]	4	15	30	50	100	200
Montagedrehmoment FBN II (feuerverzinkt)	T _{inst} =	[Nm]	-	15	30	40	70	200
Montagedrehmoment FBN II A4	T _{inst} =	[Nm]	4	10	20	35	80	150

¹⁾ Werte für reduzierte Verankerungstiefe
²⁾ Die Verwendung ist auf statisch unbestimmte Bauteile beschränkt

Effektive Verankerungstiefe

Dicke des Anbauteils

Bohrlochtiefe

Dicke des Betonbauteils T_{inst} = Montagedrehmoment

fischer Bolzenanker FBN II, FBN II A4	
Verwendungszweck Montageanleitung	Anhang B 2

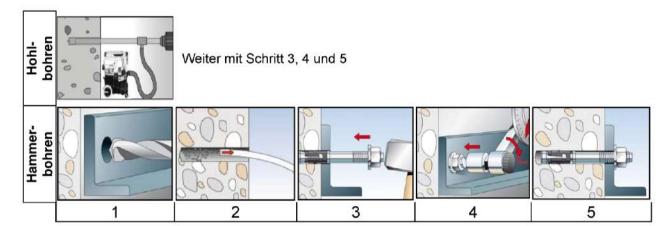


Tabelle B2: Mindestdicke der Betonbauteile, minimaler Achsabstand und minimaler Randabstand

	Dübeltyp / Größe FBN II, FBN	М6	M8	M10	M12	M16	M20		
'n	Effektive Verankerungstiefe	h _{ef, sta}	[mm]	30 ²⁾	40	50	65	80	105
P un	Mindestbauteildicke	h _{min}	[mm]	100	100	100	120	160	100000000000000000000000000000000000000
Standard Verankerungs tiefe	Minimaler Achsabstand	S _{min}	[mm]	40	40	50 (70 ¹⁾)	70	90 (120 ¹⁾)	120
S	Minimaler Randabstand	C _{min}	[mm]	40	40 (45 ¹⁾)	50 (55 ¹⁾)	70	90 (80 ¹⁾)	120
b	Effektive Verankerungstiefe	h _{ef, red}	[mm]		30 ²⁾	40	50	65	80
arte	Mindestbauteildicke	h _{min}	[mm]	- 5	100	100	100	120	160
Reduzierte Verankerungs- tiefe	Minimaler Achsabstand	S _{min}	[mm]	-	40 (50 ¹⁾)	50	70	90	
Verg	Minimaler Randabstand	C _{min}	[mm]	4	40 (45 ¹⁾)	80	100	120	120

¹⁾ Werte für FBN II A4

Montageanleitung

Nr.	Beschreibung								
1	Bohrloch erstellen mit Hammerbohrer	Bohrloch erstellen mit Hohlbohrer und Staubsauger							
2	Bohrloch reinigen -								
3	Anke	er setzen							
4	Anker mit dem vorgeschriebenen Montagedrehmoment verspreizen T _{inst} Abgeschlossene Montage								
5									

	Bohrerarten	
Hammerbohrer	B4440000000	
Hohlbohrer	Ī	

fischer Bolzenanker FBN II, FBN II A4

Verwendungszweck
Minimaler Achsabstand und Randabstand
Montageanleitung

Anhang B 3

²⁾ Die Verwendung ist auf statisch unbestimmte Bauteile beschränkt

Tabelle C1: Charakteristische Werte für Zugtragfähigkeit für Standardverankerungstiefe und reduzierte Verankerungstiefe unter statischer und quasi-statischer Belastung (Bemessungsverfahren A, gemäß ETAG 001, Anhang C oder Bemessungsmethode A, gemäß CEN/TS 1992-4:2009)

Dübeltyp / Größe	М6	М8	M10	M12	M16	M20				
Stahlversagen für Standardve	rankerung	gstiefe ur	nd redu	zierte V	eranke	rungsti	efe FBN	1 II		
Charakteristischer Widerstand FBN II	N _{Rk,s}	[kN]	8,3	16,5	27,2	41,6	77,9	107		
Teilsicherheitsbeiwert	γMs	[-]	1,5	1,4	1,4	1,4	1,5	1,5		
Stahlversagen für Standardve	rankerun	gstiefe ur	nd redu	zierte V	eranke	rungsti	efe FBN	III A4		
Charakteristischer Widerstand FBN II A4	N _{Rk,s}	[kN]	10,6	16,5	27,2	41,6	78	111		
Teilsicherheitsbeiwert	γMs	[-]	1,5	1,4	1,4	1,4	1,4	1,5		
Herausziehen für Standardver	ankerung	stiefe FB	N II, FB	N II A4						
Charakteristischer Widerstand C20/25	N _{Rk,p}	[kN]	6 ⁴⁾			- ³⁾				
Herausziehen für reduzierte V	erankerur	ngstiefe F	BN II, F	BN II A	4					
Charakteristischer Widerstand C20/25	N _{Rk,p}	[kN]	-	6 ⁴⁾		-	3)			
		C25/30	1,10							
		C30/37	1,22							
Erhähungsfaktaran für N		C35/45	/45 1,34							
Erhöhungsfaktoren für N _{Rk,p}	Ψс	C40/50	1,41							
		C45/55	1,48							
		C50/60			1,	55				
Montagesicherheitsbeiwert	γ_2 = γ_{inst} 2)	[-]				0				
Betonausbruch und Spalten fo	ür Standa	rdverank	erungsi	iefe FB	N II, FB	N II A4				
Effektive Verankerungstiefe	h _{ef, sta}	[mm]	30 ⁴⁾	40	50	65	80	105		
Faktor für ungerissenen Beton	k _{ucr} 2)	[-]			10	,				
Achsabstand	S _{cr.N}	[mm]			3 h	ef, sta				
Randabstand	C _{cr,N}	[mm]			1,5 ł	l _{ef, sta}				
Achsabstand (Spalten)	S _{cr.sp}	[mm]	130 ⁴⁾	190	200	290	350	370		
Randabstand (Spalten)	C _{cr,sp}	[mm]	65 ⁴⁾	95	100	145	175	185		
Betonausbruch und Spalten fo		kerung								
Effektive Verankerungstiefe	ve Verankerungstiefe h _{ef, red} [mm]			30 ⁴⁾	40	50	65	80		
Faktor für ungerissenen Beton	k _{ucr} ²⁾	[-]	10,1							
Achsabstand	S _{cr,N}	[mm]	3 h _{ef, red}							
Randabstand	C _{cr,N}	[mm]	1,5 h _{ef, red}							
Achsabstand (Spalten)	S _{cr,sp}	[mm]	-	190 ⁴⁾	200	290	350	370		
Randabstand (Spalten)	C _{cr,sp}	[mm]	-	95 ⁴⁾	100	145	175	185		

fischer Bolzenanker FBN II, FBN II A4	
Leistungen Charakteristische Werte für Zugtragfähigkeit für Standard- und reduzierte Verankerungstiefe	Anhang C 1

Parameter relevant für Bemessung gemäß ETAG 001, Anhang C
 Parameter relevant für Bemessung gemäß CEN/TS 1992-4:2009
 Versagensart Herausziehen nicht maßgebend
 Die Verwendung ist auf statisch unbestimmte Bauteile beschränkt

Tabelle C2: Charakteristische Quertragfähigkeit für Standard- und reduzierte Verankerungstiefe unter statischer und quasi-statischer Belastung (Bemessungsverfahren A, gemäß ETAG 001, Anhang C oder Bemessungsmethode A, gemäß CEN/TS 1992-4:2009)

Dishaltur / Cui Ca			М6	M8	M10	M12	M16	M20
Dübeltyp / Größe	N							
Stahlversagen ohne Hebelarm für S								
Charakt. Widerstand FBN II	V _{Rk,s}	[kN]	6,0	13,3	21,0	31,3	55,1	67
Stahlversagen ohne Hebelarm für S								
Charakt. Widerstand FBN II A4	$V_{Rk,s}$	[kN]	5,3	12,8	20,3	27,4	51	86
Stahlversagen mit Hebelarm für Sta								
Charakt. Biegemoment FBN II	M ⁰ _{Rk,s}	[Nm]	9,4 ³⁾	26,2	52,3	91,6	232,2	422
Stahlversagen mit Hebelarm für Sta		ankerun						
Charakt. Biegemoment FBN II A4	M ⁰ _{Rk,s}	[Nm]	8 ³⁾	26	52	85	216	454
Stahlversagen mit Hebelarm für red		erankeru	ingstief					
Charakt. Biegemoment FBN II	M ⁰ _{Rk,s}	[Nm]	-	19,9 ³⁾	45,9	90,0	226,9	349
Stahlversagen mit Hebelarm für red		erankeru	ingstief					
Charakt. Biegemoment FBN II A4	M ⁰ _{Rk,s}	[Nm]	-	21 ³⁾	47	85	216	353
Teilsicherheitsbeiwert Stahlversagen	γMs	[-]			1,	25		
Faktor für Duktilität	k ₂ ²⁾	[-]			1	,0		
Betonausbruch auf der lastabgewa	ndten Sei	te für Sta	andardv	erankeı	rungstie	fe FBN	II, FBN	II A4
Faktor k gemäß ETAG 001, Anhang	. 1) . 2)		3\					
C oder k₃ gemäß CEN/TS 1992-4	$k^{1)}=k_{(3)}^{2)}$	[-]	1,4 ³⁾	1,8	2,1	2,3	2,3	2,3
Montagesicherheitsbeiwert	$\gamma_2^{(1)} = \gamma_{inst}^{(2)}$	[-]			1	,0		
Betonausbruch auf der lastabgewa			luzierte	Verank			N II FRI	Ν ΙΙ Δ4
Faktor k gemäß ETAG 001, Anhang				Veranik	crango		.,,,,,	NII AT
C oder k₃ gemäß	k ¹⁾ =k ₍₃₎ ²⁾	[-]	-	1,8 ³⁾	2,1	2,3	2,3	2,3
CEN/TS 1992-4	, ,							
Montagesicherheitsbeiwert	$\gamma_2^{(1)} = \gamma_{inst}^{(2)}$	[-]			1	,0		
Betonkantenbruch für Standardver	ankerung	stiefe FB		N II A4				
Effektive Verankerungslänge	I _{f,sta}	[mm]	30 ³⁾	40	50	65	80	105
Dübeldurchmesser	d _{nom}	[mm]	6	8	10	12	16	20
Montagesicherheitsbeiwert	$\gamma_2^{(1)} = \gamma_{inst}^{(2)}$	[-]				,0		
Betonkantenbruch für reduzierte V	erankerur	igstiefe F	BN II, F		4			
Effektive Verankerungslänge	$I_{f,red}$	[mm]	-	30 ³⁾	40	50	65	80
Dübeldurchmesser	d _{nom}	[mm]	-	8	10	12	16	20
Montagesicherheitsbeiwert	$\gamma_2^{(1)} = \gamma_{inst}^{(2)}$	[-]			1	,0		

¹⁾Parameter relevant für Bemessung gemäß ETAG 001, Anhang C

fischer Bolzenanker FBN II, FBN II A4

Leistungen
Charakteristische Quertragfähigkeit für Standard- und reduzierte Verankerungstiefe

Anhang C 2

²⁾ Parameter relevant für Bemessung gemäß CEN/TS 1992-4:2009

³⁾ Die Verwendung ist auf statisch unbestimmte Bauteile beschränkt

Tabelle C3: Verschiebungen aufgrund von Zuglasten

Dübeltyp / Größe FBN II, FBN II A4			M6	M8	M10	M12	M16	M20			
Standardverankerungstiefe	h _{ef, sta}	[mm]	30	40	50	65	80	105			
Zuglast C20/25	N	[kN]	2,8	6,1	8,5	12,6	17,2	25,8			
Verschiebungen	δ_{NO}	[mm]	1,9	0,6	0,9	1,5 (1,9 ¹⁾)	1,8	1,8 (2,0 ¹⁾)			
Verschiedungen	$\delta_{N\infty}$	[mm]	3,1 (2,7 ¹⁾)								
Reduzierte Verankerungstiefe	h _{ef, red}	[mm]		30	40	50	65	80			
Zuglast C20/25	N	[kN]	-	2,8	6,1	8,5	12,6	17,2			
Verschiebungen	δ_{NO}	[mm]		0,4	0,7	0,7	0,9	1,0			
Verschiebungen	$\delta_{N\infty}$	[mm]				1,6 (1,7 ¹⁾)					

¹⁾ Werte für FBN II A4

Tabelle C4: Verschiebungen aufgrund von Querlasten

Dübeltyp / Größe FBN II, FBN II A4			М6	M8	M10	M12	M16	M20
Querlast FBN II	V	[kN]	3,4	7,6	12,0	17,9	31,5	38,2
Verschiebungen EBN II	δ_{V0}	[mm]	0,7	1,5	1,6	2,0	3,0	2,6
Verschiebungen FBN II	$\delta_{V\infty}$	[mm]	1,1	2,3	2,4	3,0	4,5	3,9
Querlast FBN II A4	٧	[kN]	3,0	7,3	11,6	15,7	29,1	49,0
Verschiebungen EBN II A4	δ_{V0}	[mm]	1,5	1,4	2,1	2,6	2,7	4,6
Verschiebungen FBN II A4	$\delta_{V\infty}$	[mm]	2,3	2,2	3,2	3,9	4,1	7,0

fischer Bolzenanker FBN II, FBN II A4	
Leistungen Verschiebung unter Zug- und Querlasten	Anhang C 3