BTN - BALKENTRÄGER

Die Balkenträger dienen als verdeckte Anschlüsse von Nebenträgern an Hauptträgern oder an Stützen.

DE-DoP-e07/0245, ETA-07/0245

EIGENSCHAFTEN

Material

Stahlqualität:

S 250 GD +Z 275 gemäß DIN EN 10346

Korrosionsschutz:

275 g/m2 beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm

Vorteile

- Es können Anschlüsse mit Neigungen bis zu 45° ausgeführt werden.
- Der Montageschlitz ermöglicht ein sicheres und bequemes Einhängen der Nebenträger.
- Bei dieser Montageweise sind zusätzliche Abstützungen nicht mehr erforderlich.
- Besteht eine Brandschutzanforderung ist diese mit dem Balkenträger nach DIN 4102 leicht ausführbar.

ANWENDUNG

Anwendbare Materialien

Auflager:

Holz, Holzwerkstoffe

<u>Aufzulagerndes Bauteil:</u>

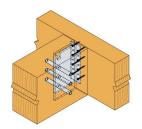
Holz, Holzwerkstoffe

Anwendungsbereich

Für Anschlüsse von Nebenträgern aus Holz oder Holzwerkstoffen an Hauptträger/ Stützen asu Holz/ Holzwerkstoffen.

Simpson Strong-Tie GmbH Hubert-Vergölst-Str. 6-14 D-61231 Bad Nauheim tel: +49 (6032) 86 80- 0 / fax : +49 (6032) 86 80- 199

Copyright by Simpson Strong-Tie® Alle Angaben gelten ausschließlich für die genannten Produkte. BTN - Balkenträger


page

TECHNISCHE DATEN

Abmessungen

Artikel		ingen des gers [mm]		Ak	Löcher im Hauptträger	Löcher im Nebenträger			
Altikei	Breite	Höhe [mm]	Α	R	С	t.	to	Ø5	Ø13
	Min.	Min β=0		В		\$1	~2	25	213
BTN90	60	90	90	103	46	3	6	8	4 (Ø8.5)
BTN120	60	152	120	103	46	3	6	10	3
BTN160	60	192	160	103	46	3	6	14	4
BTN200	60	232	200	103	46	3	6	18	5
BTN240	60	272	240	103	46	3	6	22	6

Kombinierte Belastung:

$$\sum \frac{F_{i,d}}{R_{i,d}} \le 1$$

Charakteristische Tragfähigkeiten - Holzbalken an Holzbalken

	Charakteristische Tragfähigkeiten - Holz an Holz - Vollausnagelung																	
Artikel		Verbindung	Charakter. Tragfähigkeiten - Nadelholz C24 [kN]															
	Hauptträger Neben		nträger	$R_{1,k}$						$R_{2,k}$								
	Anzahl Tvp	Тур	Anzahl	Тур		St	abdübell	änge [m	m]			St	abdübell	änge [m	nm] 140 160			
	Alizalii	тур	Alizalli	Тур	60	80	100	120	140	160	60	80	100	120	140	160		
BTN90	8	CNA4.0x50	4	STD8	8.3	9.2	10.3	11	11	11	6.2	6.9	7.7	8.2	8.2	8.2		
BTN120	10	CNA4.0x50	3	STD12	13.8	14.5	15.6	16.9	18.3	19.5	9.2	9.7	10.4	11.3	12.2	13		
BTN160	14	CNA4.0x50	4	STD12	22	23.2	24.7	26.6	28.5	30.1	16.5	17.4	18.5	20	21.4	22.6		
BTN200	18	CNA4.0x50	5	STD12	31.1	32.7	34.7	37	39.1	39.9	24.9	26.2	27.8	29.6	31.3	31.9		
BTN240	22	CNA4.0x50	6	STD12	40.5	42.6	45	47.5	48.8	48.8	33.8	35.5	37.5	39.6	40.7	40.7		

Nebenträgerbreite = Stabdübellänge

Für Balken mit einer Neigung β müssen die Tragfähigkeiten mit dem Faktor multipliziert werden.

		•		
β	0°	15°	30°	45°
Faktor	1.0	0.95	0.9	0.85

 $R_{2,k}$ Tragfähigkeiten können bemessen werden als $R_{2,k}$ = $R_{1,k}$ x (Anzahl der Stabdübel - 1) / (Anzahl der Stabdübel).

Der oberste Stabdübel ist nicht für abhebende Kräfte anzusetzen, da dieser in einem offenen Dübelloch sitzt.

Weitere Informationen finden Sie in der ETA.

Charakteristische Tragfähigkeiten - Holzbalken an Holzbalken - R_{3.k} und R_{4.k}

Simpson Strong-Tie GmbH Hubert-Vergölst-Str. 6-14 D-61231 Bad Nauheim tel: +49 (6032) 86 80- 0 / fax : +49 (6032) 86 80- 199

BTN - Balkenträger

page 2/4

			Ch	arakteristisc	he Tragfähigkeiten - Holz an Holz - Vollausnagelung									
		Verbindur	ngsmittel		Charakter. Tragfähigkeiten - Nadelholz C24 [kN]									
Artikel	Hauptträger		Nebenträger			R _{3,k}								
	Anzahl	Тур	Anzahl	Тур		Stabdübellänge [mm]								
		ТУР	Alizalli	Typ	60	80	100	120	140	160				
BTN90	8	CNA4.0x50	4	STD8	1.5	1.9	2.3	2.7	3.1	3.6	3.9			
BTN120	10	CNA4.0x50	3	STD12	2.2	2.9	3.5	4.1	4.6	5.2	4.9			
BTN160	14	CNA4.0x50	4	STD12	2.9	3.6	4.4	5.2	6	6.6	6.9			
BTN200	18	CNA4.0x50	5	STD12	3.5	4.4	5.4	6.4	7.2	8.1	8.8			
BTN240	22	CNA4.0x50	6	STD12	4.2	5.3	6.4	7.4	8.6	9.5	10.8			

Nebenträgerbreite = Stabdübellänge.

Die Tragfähigkeiten R_4 beziehen sich auf alle Stabdübellängen.

Charakteristische Tragfähigkeiten - Holzbalken an Stütze

				Charakteristische Tragfähigkeiten - Holzbalken an Stütze - Teilausnagelung													
		Verbindungs	smittel	Sti	itzenbre		Charakter. Tragfähigkeiten - Nadelholz C24 [kN]										
Artikel	Hauptträger Nebenträ		nträger			$R_{1,k}$ $R_{2,k}$						2,k					
	Anzahl Typ	Anzahl	Тур	Min.	Stabdübellänge [mm] Stabdübell						länge [mm]						
	Alizalli	Тур	AllZalli	ТУР		60 80 100 120 140 160 60							80	100	120	140	160
BTN90	4	CNA4.0x50	4	STD8	66	7.1	7.9	8.6	8.9	8.9	8.9	5.3	5.9	6.4	6.7	6.7	6.7
BTN120	6	CNA4.0x50	3	STD12	66	12.4	13	13.3	13.3	13.3	13.3	8.3	8.7	8.9	8.9	8.9	8.9
BTN160	8	CNA4.0x50	4	STD12	66	16.8	17.7	17.7	17.7	17.7	17.7	12.6	13.3	13.3	13.3	13.3	13.3
BTN200	10	CNA4.0x50	5	STD12	66	21.1	22.2	22.2	22.2	22.2	22.2	16.9	17.8	17.8	17.8	17.8	17.8
BTN240	12	CNA4.0x50	6	STD12	66	25.3	26.6	26.6	26.6	26.6	26.6	21.1	22.2	22.2	22.2	22.2	22.2

Nebenträgerbreite = Stabdübellänge

Für Balken mit einer Neigung β müssen die Tragfähigkeiten mit dem Faktor multipliziert werden.

	<u> </u>			
β	0°	15°	30°	45°
Faktor	1.0	0.95	0.9	0.85

Die Tragfähigkeiten dieser Tabelle gelten auch für Teilausnagelung - Balken an Balken.

 $R_{2,k}$ Tragfähigkeiten können bemessen werden als $R_{2,k}$ = $R_{1,k}$ x (Anzahl der Stabdübel - 1) / (Anzahl der Stabdübel).

Der oberste Stabdübel ist nicht für abhebende Kräfte anzusetzen, da dieser in einem offenen Dübelloch sitzt.

Weitere Informationen finden Sie in der ETA.

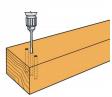
Charakteristische Tragfähigkeiten - Holzbalken an Stütze - R_{3.k} und R_{4.k}

			Cha	rakteristisch	ne Tragfähig	Tragfähigkeiten - Holzbalken an Stütze - Teilausnagelung								
		Verbindun	gsmittel		Stützenbreit									
Artikel	Hauptträger		Neber	Nebenträger			R _{3,k}							
	Anzahl Typ	Typ	Anzahl	Тур	Min.			$R_{4,k}$						
		ТУР	Alizalli	Тур		60	80	100	120	140	160			
BTN90	4	CNA4.0x50	4	STD8	66	1.2	1.6	2	2.4	2.4	2.4	3.9		
BTN120	6	CNA4.0x50	3	STD12	66	1.8	2.4	3	3.6	4.1	4.1	5.9		
BTN160	8	CNA4.0x50	4	STD12	66	2.3	3	3.6	3.9	3.9	3.9	7.8		
BTN200	10	CNA4.0x50	5	STD12	66	2.9	3.8	4.6	5.5	6.2	6.3	9.8		
BTN240	12	CNA4.0x50	6	STD12	66	3.4	4.2	5.2	6	6.1	6.1	11.8		

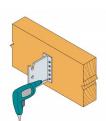
Nebenträgerbreite = Stabdübellänge.

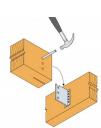
Die Tragfähigkeiten $R_{4,k}$ beziehen sich auf alle Stabdübellängen.

BTN - BALKENTRÄGER



INSTALLATION


Befestigung


- CNA4,0×L Kammnägeln
- oder CSA5,0×L Schrauben und Stabdübel Ø8mm bzw. Ø12mm

