

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische **Technische Bewertung**

ETA-07/0121 vom 30. März 2017

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

fischer Rahmendübel SXR/ SXRL

Kunststoffdübel als Mehrfachbefestigung von nichttragenden Systemen zur Verankerung im Beton und Mauerwerk

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal **DEUTSCHLAND**

fischerwerke

32 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäische technische Zulassung für "Kunststoffdübel als Mehrfachbefestigung von nichttragenden Systemen zur Verankerung im Beton und Mauerwerk" ETAG 020 Teil 1: "Allgemeines", Fassung März 2012.

verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU)

Nr. 305/2011, ausgestellt.

ETA-07/0121 vom 10. April 2015

Europäische Technische Bewertung ETA-07/0121

Seite 2 von 32 | 30. März 2017

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-07/0121

Seite 3 von 32 | 30. März 2017

Besonderer Teil

1 Technische Beschreibung des Produkts

Der fischer Rahmendübel in den Größen SXR 8, SXRL 8, SXR 10, SXRL 10 und SXRL 14 ist ein Kunststoffdübel bestehend aus einer Dübelhülse aus Polyamid und einer zugehörigen Spezialschraube aus galvanisch verzinktem Stahl, aus galvanisch verzinktem Stahl mit zusätzlicher Duplex-Beschichtung oder nichtrostendem Stahl.

Die Dübelhülse wird durch das Eindrehen der Spezialschraube, die die Hülse gegen die Bohrlochwandung presst, verspreizt.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Die wesentlichen Merkmale bezüglich mechanischer Festigkeit und Standsicherheit sind unter der Grundanforderung Sicherheit bei der Nutzung erfasst.

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Siehe Anhang C 2

3.3 Sicherheit und Barrierefreiheit bei der Nutzung (BWR 4)

Wesentliches Merkmal	Leistung
Charakteristische Werte für Zug- und Querbeanspruchung	Siehe Anhang C 1, C 3 – C 20
Charakteristische Biegemomente	Siehe Anhang C 1
Verschiebungen unter Zug- und Querbeanspruchung	Siehe Anhang C 2
Dübelabstände und Bauteilabmessungen	Siehe Anhang B 3, B 4

3.4 Allgemeine Aspekte

Der Nachweis der Dauerhaftigkeit ist Bestandteil der Prüfung der wesentlichen Merkmale. Die Dauerhaftigkeit ist nur sichergestellt, wenn die Angaben zum Verwendungszweck gemäß Anhang B beachtet werden.

Europäische Technische Bewertung ETA-07/0121

Seite 4 von 32 | 30. März 2017

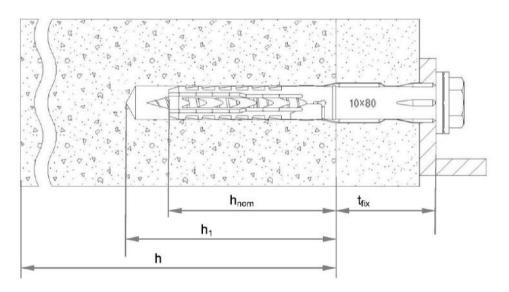
4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß der Leitlinie für die europäische technische Zulassung ETAG 020, März 2012 verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011 gilt folgende Rechtsgrundlage: 97/463/EG. Folgendes System ist anzuwenden: 2+

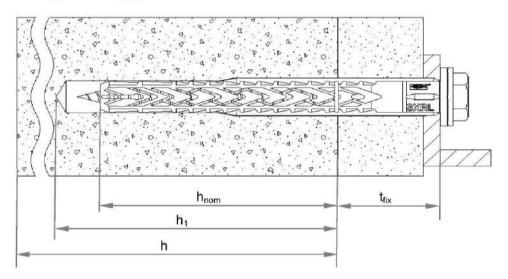
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplan, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 30. März 2017 vom Deutschen Institut für Bautechnik


Uwe Bender Abteilungsleiter Beglaubigt

Zieg Cor

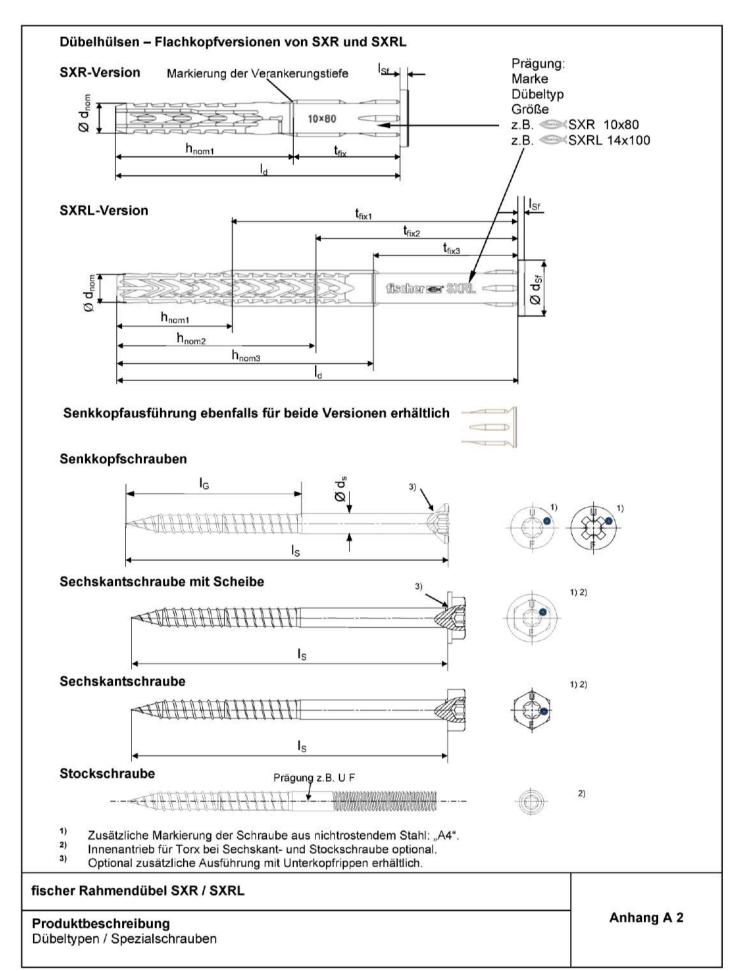

Deutsches Institut
für Bautechnik

SXR

SXRL (z.B. mit h_{nom2})

Legende

h_{nom} = Gesamtlänge des Kunststoffdübels im Verankerungsgrund


h₁ = Tiefe des Bohrlochs bis zum tiefsten Punkt

h = Dicke des Bauteils (Wand)

t_{fix} = Dicke des Anbauteils und/oder nichttragende Deckschicht

fischer Rahmendübel SXR / SXRL	
Produktbeschreibung Einbauzustand	Anhang A 1

Tabelle A3.1: Abmessungen [mm]

Dübeltyp			0.0	Spezialschraube								
	h _{nom1} [mm]	h _{nom2} [mm]	h _{nom3} [mm]	Ø d _{nom} [mm]	t _{fix} [mm]	min. l _d [mm]	max. l _d [mm]	l _{sf} 1) [mm]	Ø d _{sf} [mm]	Ø d _s [mm]	I _G [mm]	l _s [mm]
SXR 8	50	-	-	8	≥1	51	360	1,8	> 15,0	6,0	≥ 55	≥ I _d + 6
SXRL 8	50	70	90	8	≥ 1	51	360	1,8	> 15,0	6,0	≥ 55	≥ I _d + 6
SXR 10	50	7.4	-	10	≥1	51	360	2,2	> 18,5	7,0	≥ 57	≥ I _d + 7
SXRL 10	50 ²⁾	70	90	10	≥1	51	360	2,2	> 18,5	7,0	≥77	≥ I _d + 7
SXRL 14		70	90	14	≥1	71	600	3,1	> 24,0	9,6	≥ 63	≥ I _d + 10

Gilt nur für Ausführung mit flachem Rand

Tabelle A3.2: Werkstoffe

Bezeichnung	Material
Dübelhülse	Polyamid, PA6, Farbe grau
Spezialschraube	- Stahl gvz A2G oder A2F nach EN ISO 4042:2001 oder - Stahl gvz A2G oder A2F nach EN ISO 4042:2001 + Duplex-Beschichtung Typ Delta-Seal in drei Schichten (Gesamtschichtdicke ≥ 6 μm) oder - nichtrostender Stahl gemäß EN 10 088-3:2014, z. B. 1.4401, 1.4571, 1.4578, 1.4362

fischer Rahmendübel SXR / SXRL	
Produktbeschreibung Abmessungen und Werkstoffe	Anhang A 3

²⁾ Prägung optional.

Spezifizierungen des Verwendungszweckes

Beanspruchung der Verankerung:

- · Statische und quasi-statische Belastungen.
- · Mehrfachbefestigung von nichttragenden Systemen.

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton mit einer Festigkeitsklasse ≥ C12/15 (Nutzungskategorie "a"), gemäß EN 206-1:2000.
- Vollsteinmauerwerk (Nutzungskategorie "b"), gemäß Anhang C3 C7.
 Anmerkung: Die charakteristische Tragfähigkeit des Dübels kann auch für Vollstein Mauerwerk mit größeren Abmessungen und größeren Druckfestigkeiten angewendet werden.
- Hohl- oder Lochsteine (Nutzungskategorie "c") gemäß Anhang C7 C19.
- Porenbeton (Nutzungskategorie "d"), gemäß Anhang C20.
- Mörtel-Druckfestigkeitsklasse des Mauerwerks ≥ M2,5 gemäß EN 998-2:2010.
- Bei anderen Steinen der Nutzungskategorie "a", "b", "c" oder "d" darf die charakteristische Tragfähigkeit der Dübel durch Baustellenversuche nach ETAG 020, Anhang B Fassung März 2012 ermittelt werden.

Temperaturbereich:

SXR 8 und 10 und SXRL 8

- c: 40 °C bis 50 °C (max. Kurzzeittemperatur + 50 °C und max. Langzeittemperatur + 30 °C)
- b: 40 °C bis 80 °C (max. Kurzzeittemperatur + 80 °C und max. Langzeittemperatur + 50 °C)

SXRL 10 und 14

- c: 20 °C bis 50 °C (max, Kurzzeittemperatur + 50 °C und max, Langzeittemperatur + 30 °C)
- b: 20 °C bis 80 °C (max. Kurzzeittemperatur + 80 °C und max. Langzeittemperatur + 50 °C)

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl).
- Die Spezialschraube aus galvanisch verzinktem Stahl oder galvanisch verzinktem Stahl mit zusätzlicher Duplex-Beschichtung darf auch im Freien verwendet werden, wenn nach sorgfältigem Einbau der Befestigungseinheit der Bereich des Schraubenkopfes gegen Feuchtigkeit und Schlagregen so geschützt wird, dass ein Eindringen von Feuchtigkeit in den Dübelschaft nicht möglich ist. Dafür ist vor dem Schraubenkopf eine Fassadenbekleidung oder eine vorgehängte hinterlüftete Fassade zu befestigen und der Schraubenkopf selbst mit einer weich-plastischen dauerelastischen Bitumen-Öl-Kombination (z.B. Kfz-Unterboden- bzw. Hohlraumschutz) zu versehen.
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl).
 - Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Meerwasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. in Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessuna:

- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit ETAG 020, Anhang C Fassung März 2012 unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerks erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten, der Art und Festigkeit des Verankerungsgrundes, der Bauteilabmessungen und Toleranzen sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. In den Konstruktionszeichnungen ist die Position der Dübel anzugeben.
- Die Befestigungen sind nur als Mehrfachbefestigung für nichttragende Systeme nach ETAG 020 Fassung März 2012 zu verwenden.

Einbau:

- · Beachtung des Bohrverfahrens nach Anhang C3 C20 für Nutzungskategorien "b", "c" und "d".
- · Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Temperatur beim Setzen des Dübels von SXR 8/10, SXRL 8 und SXRL 14:
 -5 °C bis + 40 °C
 SXRL 10:
 -20 °C bis + 40 °C
- UV-Belastung durch Sonneneinstrahlung des ungeschützten Dübels ≤ 6 Wochen.

fischer Rahmendübel SXR / SXRL	
Verwendungszweck Spezifikationen	Anhang B 1

Tabelle B2.1: Montagekennwerte

Dübeltyp				SXR 8	SXRL 8	SXR 10	SXRL 10	SXRL 14
Bohrlochdurchmesser	d ₀	=	[mm]	8	8	10	10	14
Schneidendurchmesser des Bohrers	d _{cut}	≤	[mm]	8,45	8,45	10,45	10,45	14,45
	h _{nom1}	≥	[mm]	50	50	50	50	-
Gesamtlänge des Kunststoffdübels im Verankerungsgrund ^{1) 2)}	h _{nom2}	≥	[mm]	-	70	-	70	70
Verankerangsgrand	h _{nom3}	≥	[mm]	-	90	(=)	90	90
	h _{1,1}	≥	[mm]	60	60	60	60	-
Tiefe des Bohrlochs bis zum tiefsten Punkt 1)	h _{1,2}	≥	[mm]	-	80	-	80	85
T WINC	h _{1,3}	≥	[mm]	-	100	-	100	105
Durchmesser des Durchgangslochs im Anbauteil	d _f	≤	[mm]	8,5	9,5	10,5/12,5 ³⁾	10,5/12,5 ³⁾	15,4

Siehe Anhang A1.

Tabelle B2.2: Zuordnung von h_{nom} , I_d und t_{fix} für Anwendungen in dünnen Betonplatten (z.B. Wetterschalen von Außenwandplatten) und Spannbetonhohlplatten

Dübeltyp		SXR 10 /	SXRL 10		
		d	h _{nom} ≥ 50 m		
Anwendung in Kategorie "a"	ng in Kategorie "a" SXR SXRL		t _{fix, min}	t _{fix, max}	
	52	-	1	2	
Prägung von h _{nom}	60	2	1	10	
10:00	80	80	21	30	
tantana L	100	100	41	50	
h _{nom} t _{fix}	120	120	61	70	
ld l	140	140	81	90	
	160	160	101	110	
Prägung von h _{nom}	180	180	121	130	
Destroyer COL	200	200	141	150	
2 Company of the Comp	230	230	171	180	
h _{nom} _ t _{fix} _	260	260	201	210	
l _a		290	231	240	
← 'a →		[m	m]		

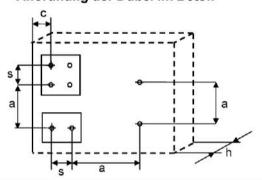
Tabelle B2.3: Montagekennwerte für Anwendungen in Spannbetonhohlplatten

Dübeltyp	SXRL 10				
ਕ ≥ 50	Spiegeldicke	d _b	≥	[mm]	30
	Gesamtlänge des Kunststoffdübels im Verankerungsgrund	h _{nom}		[mm]	50 bis 59

fischer Rahmendübel SXR / SXRL	
Verwendungszweck Montagekennwerte, Kennwerte für die Anwendung in dünnen Betonplatten (z.B. Wetterschalen von Außenwandplatten) und Spannbetonhohlplatten	Anhang B 2

Wenn die Verankerungstiefe größer ist als das in Tabelle B2.1 angegebene h_{nom} (nur für Mauerwerk aus Hohlblöcken oder Lochsteinen), so müssen nach ETAG 020, Anhang B Baustellenversuche durchgeführt werden.

Siehe Tabelle C2 1.


Tabelle B3.1: Minimale Bauteildicke, Randabstand und Achsabstand in Beton

Dübel- typ	h _{nom} ≥	Beton Druckfestig- keitsklasse	Mindest- bauteil- dicke h _{min}	Charakteristischer Randabstand c _{cr,N}	Charakteristischer Achsabstand s _{cr,N}	Minimale Achs- und Randabstände ¹⁾
	[mm]		[mm]	[mm]	[mm]	[mm]
SXR 8	50	≥ C16/20	100	50	65	$ s_{min} = 50 \text{ für } c \ge 50$ $ c_{min} = 50 \text{ für } s \ge 50$
SAR 6	50	C12/15	100	70	70	$ s_{min} = 70 \text{ für } c \ge 70$ $ c_{min} = 70 \text{ für } s \ge 70$
		≥ C16/20		60	75	$s_{min} = 60 \text{ für } c \ge 60$ $c_{min} = 60 \text{ für } s \ge 60$
	50	C12/15	80	85	90	$s_{min} = 85 \text{ für } c \ge 85$ $c_{min} = 85 \text{ für } s \ge 85$
SXRL 8		≥ C16/20		60	90	$s_{min} = 60 \text{ für } c \ge 60$ $c_{min} = 60 \text{ für } s \ge 60$
	70	C12/15	100	85	105	$s_{min} = 85 \text{ für } c \ge 85$ $c_{min} = 85 \text{ für } s \ge 85$
2000 200		≥ C16/20	4)	100	90	$s_{min} = 50 \text{ für } c \ge 150$ $c_{min} = 60 \text{ für } s \ge 70$
SXR 10	10 50 C12/15	C12/15	100 ⁴⁾	140	100	$s_{min} = 70 \text{ für } c \ge 210$ $c_{min} = 85 \text{ für } s \ge 100$
		≥ C16/20	,	100	105	$s_{min} = 50 \text{ für } c \ge 100$ $c_{min} = 50 \text{ für } s \ge 125$
	50	C12/15	4)	140	120	$s_{min} = 70 \text{ für } c \ge 140$ $c_{min} = 70 \text{ für } s \ge 175$
SXRL 10	2)	≥ C16/20	100 ⁴⁾	100	105	$s_{min} = 50 \text{ für } c \ge 100$ $c_{min} = 50 \text{ für } s \ge 125$
	70 ²⁾	C12/15		140	120	$s_{min} = 70 \text{ für } c \ge 140$ $c_{min} = 70 \text{ für } s \ge 175$
	3)	≥ C16/20		100	120	$s_{min} = 60 \text{ für } c \ge 100$ $c_{min} = 60 \text{ für } s \ge 125$
SXRL 14	70 ³⁾	C12/15	110	140	135	$s_{min} = 85 \text{ für } c \ge 140$ $c_{min} = 85 \text{ für } s \ge 175$

Zwischenwerte dürfen interpoliert werden.

Befestigungspunkte mit einem Abstand a $\leq s_{cr,N}$ werden als Gruppe betrachtet, mit einer maximalen charakteristischen Zugtragfähigkeit $N_{Rk,p}$ nach Tabelle C1.3. Für einen Achsabstand a $> s_{cr,N}$ werden die Dübel immer als Einzeldübel betrachtet, jeweils mit einem charakteristischen Widerstand $N_{Rk,p}$ gemäß Tabelle C1.3.

Anordnung der Dübel im Beton

fischer Rahmendübel SXR / SXRL

Verwendungszweck

Rand- und Achsabstände in Beton

Anhang B 3

²⁾ Werte gültig für bewehrten Beton.

Bitte beachten: Werte für unbewehrten Beton sind $h_{min} = 110$ mm und $c_{min} = s_{min} = 80$ mm für Beton $\ge C16/20$ und $c_{min} = s_{min} = 110$ mm für C12/15.

Bitte beachten: Werte für unbewehrten Beton sind h_{min} = 110 mm und c_{min} = 100 und s_{min} = 80 mm für Beton ≥ C16/20 und c_{min} = 140 und s_{min} = 110 mm für C12/15.

⁴⁾ Auch für dünne Betonplatten geeignet h ≥ 40 mm, h_{nom} = 50 mm bis 59 mm

Taballa R4 1:	Minimala Rautaildicka	Randahetand und	Achsabstand in Mauerwerk
Tabelle D4. I.	willimale bautelluicke.	Randabstand und	Achsabstand in Maderwerk

Dübeltyp	**		SXR 8	SXRL 8	SXR 10	SXRL 10	SXRL 14			
Mindestbauteildicke	h _{min}	[mm]	100	115	100	110	115			
Einzeldübel					·-	(a) (a)				
Minimaler Achsabstand	\mathbf{a}_{min}	[mm]	250	250	250	250	250			
Minimaler Randabstand	C _{min}	[mm]	100	100	100	100	100			
Dübelgruppe										
Minimaler Achsabstand vertikal zum freien Rand	S _{1,min}	[mm]	100	100	100	100	100			
Minimaler Achsabstand parallel zum freien Rand	S _{2,min}	[mm]	100	100	100	100	100			
Minimaler Randabstand	C _{min}	[mm]	100	100	100	100	100			
Abstand zwischen benachbarten Dübelgruppen und / oder Einzeldübeln:	а	[mm]			250					

Anordnung der Dübel in Mauerwerk und Porenbeton (PB)

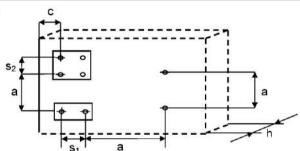
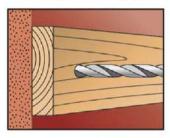
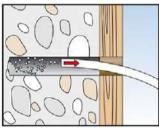
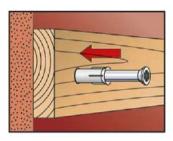


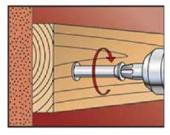
Tabelle B4.2: Minimale Bauteildicke, Randabstand und Achsabstand in Porenbeton (PB)

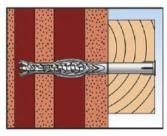

Dübeltyp			SXRL	3	SXR 10	SXRL 10			SXR	L 14		
Druckfestigkeit	f _b	[N/mm²]	≥ 2 bis < 6	≥ 6	≥ 2	≥ 2		≥ 2 bis < 4			≥ 4	
Nominale Verankerungstiefe	ominale Verankerungstiefe $h_{nom} \ge [mm]$		70 und 9	90	50	70	90	70	90	70	90	
Mindestbauteildicke	h _{min}	[mm]	175		100	100	120	17	75	:	300	
Einzeldübel												
Minimaler Achsabstand	a _{min}	[mm]	250 250 250 250				2	250				
Minimaler Randabstand	C _{min}	[mm]	60 80		100	120		80		100	120	
Dübelgruppe												
Minimaler Achsabstand vertikal zum freien Rand	S _{1,min}	[mm]	80	110	200	100 / 120 ¹⁾		80		80	100	
Minimaler Achsabstand parallel zum freien Rand	S _{2,min}	[mm]	80	110	400 ²⁾	100	/ 120 ¹⁾	80	100	80	125	
Minimaler Randabstand	C _{min}	[mm]	90	110	100	1	20	12	0	120	150	
Abstand zwischen benachbar- ten Dübelgruppen und / oder Einzeldübeln:	а	[mm]	250 ²⁾									
1) Gültig für PB ≥ 600 kg/m³	2)	SXR 10 in	PB ≥ 400 mm									

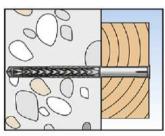
Verwendungszweck
Rand- und Achsabstand in Mauerwerk und Porenbeton PB


Anhang B 4


Montageanleitung (die folgenden Bilder zeigen eine Befestigung durch ein Holzbauteil)


1. Bohrlocherstellung (Durchmesser) gemäß Tabelle B2.1, Bohrverfahren It. Anhang C.


2. Bei Anwendungen in Kategorie "a" Beton, "b" Vollbaustoffe, "d" Porenbeton: Bohrmehl entfernen.


 Einführen des Dübels (Schraube und Dübelhülse) mit einem Hammer, bis der Rand der Dübelhülse bündig an der Oberfläche des zu befestigenden Teils anliegt.

4. Der Dübel ist richtig verankert, wenn nach dem vollen Eindrehen der Schraube weder ein Drehen der Dübelhülse auftritt noch ein leichtes Weiterdrehen der Schraube möglich ist.

5. Richtig gesetzter Dübel in Hohlmauerwerk.

6. Richtig gesetzter Dübel in Beton.

fischer Rahmendübel SXR / SXRL

Verwendungszweck Montageanleitung Anhang B 5

Tabelle C1.1: Charakteristisches	Biegemoment de	r Schraube
----------------------------------	----------------	------------

Dübeltyp		SXR 8 /	SXRL 8	SXR 10 / SXRL 10			SXF	RL 14	
Material		galvanisch nicht- galvanisch nicht- verzinkter rostender verzinkter rostender Stahl Stahl Stahl Stahl				galvanisch verzinkter Stahl		nicht- rostender Stahl	
Gesamtlänge des K	Gesamtlänge des Kunststoffdübels im Verankerungsgrund								h _{nom3} 90mm
Charakteristisches Biegemoment	M _{Rk,s} [Nm]	12,4	12,0	20,6 23,6 ²⁾	20,6	48,7	62,5	47,0	60,5
Teilsicherheits- beiwert	γ _{Ms} 1)	1,25	1,29	1,29	1,29	1,	25	1,2	29

In Abwesenheit anderer nationaler Regelungen.

Tabelle C1.2: CharakteristischeTragfähigkeit der Schraube

		SXR 8 /	SXRL 8	SXR 10 /	SXRL 10	SXRL 14	
Versagen des Spreizeler (Spezialschraube)	galvanisch verzinkter Stahl	nicht- rostender Stahl	galvanisch verzinkter Stahl	nicht- rostender Stahl	galvanisch verzinkter Stahl	nicht- rostender Stahl	
Charakteristische Zugtragfähigkeit	N _{Rk,s} [kN]	14,8	14,3	21,7 24,9 ²⁾	21,7	43,4	42,0
Teilsicherheitsbeiwert	γ _{Ms} 1)	1,50	1,45	1,55	1,55	1,50	1,55
Charakteristische Quertragfähigkeit	V _{Rk,s} [kN]	7,4	7,1	10,8 12,4 ²⁾	10,8	21,7	21,0
Teilsicherheitsbeiwert	γ _{Ms} 1)	1,25	1,29	1,29	1,29	1,25	1,29

In Abwesenheit anderer nationaler Regelungen.

Tabelle C1.3: Charakteristische Tragfähigkeit in Beton (Verwendung in Kategorie "a")

Versagen duch Herauszie	ehen (Kuns	tstoffhülse)	SXF	8 8	SXF	RL 8	SXR 10	SXRL 10		SXRL 14
Verankerungstiefe h _{nom} [r	nm]			50)	50	70	50	50	70	70
Beton ≥ C12/15											20
Charakteristische Zugtragfähigkeit 30/50 °C	$N_{Rk,p}$	[kN]		3,	0	4,0	5,0	5,0	5,5	6,5	8,5
Charakteristische Zugtragfähigkeit 50/80°C	N _{Rk,p}	[kN]		2, 3,	,5 ,0 ²⁾	4,0	5,0	4,5	5,0	6,5	8,5
Beton ≥ C12/15 (z.B. Wet	tersch	nalen	von Außenwa	andpl	latte	n)				110	90
Charakteristische Zugtragfähigkeit 30/50 °C	N _{Rk}	[kN]	h ≥ 40 mm	3-	-		-	3,5	2,5 3,0 ²⁾	185	-
Charakteristische Zugtragfähigkeit 50/80 °C	N _{Rk}	[kN]	h ≥ 40 mm	-	Ē		æ	3,0	2,5 3,0 ²⁾		
Beton ≥ C45/55 in Spannl	betonl	nohlp	latten	-1		11.5	200	•		15	ù?
Charakteristische			d _b ≥ 30 mm	-	÷		-		3,5 4,0 ³⁾	-	•
Zugtragfähigkeit 50/80 °C	N _{Rk}	[kN]	d _b ≥ 40 mm	-	_		-		5,5 6,0 ³⁾		1=1
Teilsicherheitsbeiwert			γ _{Mc} 1)					1,8			•

In Abwesenheit anderer nationaler Regelungen.

fischer Rahmendübel SXR / SXRL Leistungen Charakteristische Tragfähigkeiten und charakteristisches Biegemoment der Schraube Charakteristische Tragfähigkeiten in Beton Anhang C 1

Nur für SXRL 10: "High load" Variante auf Anfrage für Senkkopfschrauben erhältlich - Kopfprägung

Nur für SXRL 10: "High load" Variante auf Anfrage für Senkkopfschrauben erhältlich - Kopfprägung 🐽

Wert für Betonfestigkeitsklasse ≥ C16/20.

Gültig nur für den Temperaturbereich 30 / 50 °C

Tabelle C2.1: Verschiebungen¹⁾ unter Zuglast und Querlast in Beton und Mauerwerk

			Zugl	last ²⁾	Quer	last ²⁾
Dübel- typ			δ _{NO} [mm]	δ _{Ν∞} [mm]	δ _{vo} [mm]	δ _{V∞} [mm]
SXR 8	50	1,2	0,65	1,30	1,02	1,53
OVDI O	50	1,6	0,56	1,12	2,00	3,00
SXRL 8	70	2,0	0,64	1,28	2,30	3,45
SXR 10	50	2,0	1,29	2,58	1,15/3,05 ³⁾	1,74/4,58 ³⁾
0VDI 40	50	2,2	0,58	1,16	1,96	2,94
SXRL 10	70	2,6	1,67	3,34	1,15/3,05 ³⁾	1,74/4,58 ³⁾
SXRL 14	70	3,40	0,39	0,63	2,79	4,19

Gültig für alle Temperaturbereiche.

Tabelle C2.2: Verschiebungen¹⁾ unter Zuglast und Querlast in Porenbeton PB

				Zugl	ast ²⁾	C	uerlast ²⁾
Dübel- typ	f _b [N/mm ²]	h _{nom} [mm]	F [kN]	δ _{NO} [mm]	δ _{N∞} [mm]	δ _{vo} [mm]	δ _{v∞} [mm]
CVDLO	≥ 2	70/90	0,14/0,21	0,45/0,55	0,90/1,10	0,28/0,42	0,42/0,63
SXRL 8	≥ 6	70/90	1,07	0,73/0,80	1,46/1,60	2,14	3,21
SXR 10	≥ 2	50	0,32	0,03	0,06	0,21	0,31
CVDL 40	≥ 2	70/90	0,32	0,23	0,46	0,64	0,96
SXRL 10	RL 10 ≥ 6 70/9		1,43	0,65	1,30	2,86	4,29
	≥ 2	70/90	0,32/0,43	0,19/0,25	0,38/0,50	0,64/0,86	0,96/1,29
CVDL 44	≥ 3	70/90	0,60/0,77	0,23/0,31	0,45/0,63	1,19/1,54	1,79/2,31
SXRL 14	≥ 4	70/90	0,88/1,11	0,26/0,38	0,53/0,76	1,75/2,22	2,62/3,33
	≥ 6	70/90	1,43/1,79	0,34/0,51	0,68/1,02	2,86/3,58	4,29/5,37

Gültig für alle Temperaturbereiche.

Tabelle C2.3: Werte unter Brandbeanspruchung in Beton C20/25 bis C50/60 in jede Lastrichtung, ohne dauernde zentrische Zuglast und ohne Hebelarm

Dübeltyp	Feuerwiderstandsklasse	F ¹⁾
SXR 10 / SXRL 10 / SXRL 14	R 90	≤ 0,8 kN

 $F_{Rk} / (\gamma_m \chi \gamma_F)$

fischer Rahmendübel SXR / SXRL	
Leistungen Verschiebungen unter Zuglast und Querlast in Beton und Mauerwerk und Porenbeton PB Charakteristische Werte unter Brandbeanspruchung in Beton	Anhang C 2

Zwischenwerte dürfen interpoliert werden.

Gültig für Durchgangsloch mit Durchmesser im Anbauteil ≤ 12,5 mm (siehe Tabelle B2.1).

Zwischenwerte dürfen interpoliert werden.

Tabelle C3.1: Charakteristische Tragfähigkeit F_{Rk} in [kN] in Vollsteinmauerwerk (Nutzungskategorie "b")

Verankerungsgrund [Hersteller Bezeichnung]	Min. Druckfestig-			Chara	akteristis	sche Trag		RK [kN]		
Geometrie, DF oder Nenngröße	keit f _b	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL	.14
(L x B x H) [mm]	[N/mm²] / Rohdichte					h _{nom} [mn	n]			
und Bohrverfahren	ρ [kg/dm³]	≥ 50	≥ 50	≥ 70	≥ 90	≥ 50	≥ 50	≥ 70	≥ 70	≥ 90
Mauerziegel Mz, gemäß EN 771-1:2011	20/1,8	3,0	•			2,0 4,0 ⁴⁾ 4,5 ⁶⁾	1.55	.=	X.=0	-
z.B. Schlagmann 3 DF (240x175x113) mittels Hammerbohren	10/1,8	2,0	4	•	•	3,0 ⁴⁾	•	-	•	-
Mauerziegel Mz, gemäß EN 771-1:2011 z.B. Schlagmann z.B. Ebersdobler NF (240x115x71) mittels Hammerbohren	36/1,8	2,5	3,0	4,0 4,5 ³⁾	8)	5,0	3,5	4,0 5,5 ³⁾	4,0 6,0 ⁴⁾ 7,0 ⁶⁾	8)
	20/1,8	2,5	3,0	4,0 4,5 ³⁾	8)	3,0 3,5 ²⁾	3,5	4,0 5,5 ³⁾	4,0 6,0 ⁴⁾ 7,0 ⁶⁾	8)
mittels Hammerbonren	12/1,8	2,0	2,0	2,5	8)	2,0	2,0	4,0 5,5 ³⁾	3,0 4,5 ⁴⁾ 5,0 ⁶⁾	8)
	10/1,8	2,0	2,0	2,5	8)	2,0	8	3,5 4,5 ³⁾	3,0 4,5 ⁴⁾ 5,0 ⁶⁾	8)
Mauerziegel Mz, gemäß EN 771-1:2011	28/1,8	3,0	2,5	3,0 3,5 ²⁾	8)	3,0	3,0 4,5 ³⁾ 5,0 ⁵⁾	5,5 6,5 ³⁾		1
z.B. Wienerberger, DK DF (240x115x52) mittels Hammerbohren	20/1,8	2,0	2,5	3,0 3,5 ²⁾	8)	2,0	3,0 4,5 ³⁾ 5,0 ⁵⁾	4,0 4,5 ³⁾	.=	-
	16/1,8	1,5	2,5	3,0 3,5 ²⁾	8)	1,5	3,0 4,5 ³⁾ 5,0 ⁵⁾	3,0 3,5 ³⁾	-	-
	12/1,8	1,5	1,5 2,0 ²⁾	2,0 2,5 ²⁾	8)	1,2	2,5 3,5 ³⁾	2,5 3,0 ³⁾	10.00	-
	10/1,8	1,5	1,2 1,5 ²⁾	8)	8)	1,2	8.50	2,5 3,0 ³⁾	n=	-
Teilsicherheitsbeiwert	γ _{Mm} ¹⁾					2,5				

In Abwesenheit anderer nationaler Regelungen.

fischer Rahmendübel SXR / SXRL	
Leistungen Charakteristische Tragfähigkeit in Vollsteinmauerwerk	Anhang C 3

Gültig nur im Temperaturbereich 30/50° C.

Nur für Randabstand c ≥ 150 mm; Zwischenwerte durch lineare Interpolation.

⁴⁾ Nur für Randabstand c ≥ 200 mm; Zwischenwerte durch lineare Interpolation.

Nur für Randabstand c ≥ 150 mm für den Temperaturbereich 30/50 °C; Zwischenwerte durch lineare Interpolation.

Nur für Randabstand c ≥ 200 mm für den Temperaturbereich 30/50 °C; Zwischenwerte durch lineare Interpolation.

Werte können vom nächst kleineren h_{nom} übernommen werden.

Tabelle C4.1: Charakteristische Tragfähigkeit F_{Rk} in [kN] in Vollsteinmauerwerk (Nutzungskategorie "b")

Verankerungsgrund [Hersteller Bezeichnung]	Min. Druckfestig-			Chara	akteristis	sche Trag		RK [kN]		***	
Geometrie, DF	keit f _b	SXR 8		SXRL 8		SXR 10		L 10	SXRL	14	
oder Nenngröße (L x B x H) [mm]	[N/mm²] / Rohdichte		h _{nom} [mm]								
und Bohrverfahren	ρ [kg/dm ³]	≥ 50	≥ 50	≥ 70	≥ 90	≥ 50	≥ 50	≥ 70	≥ 70	≥ 90	
Kalksandvollstein KS, gemäß EN 771-2:2011	36/2,0	į	r	ì		5,0	3,5 4,0 ³⁾	8)	7. =	-	
z.B. KS Wemding NF (240x115x71)	20/2,0	-	•	•		3,0 3,5 ²⁾	3,5 4,0 ³⁾	8)	-	-	
mittels Hammerbohren	20/1,8	2,5	2,5	3,0	В)	2,5 4,0 ⁴⁾	ž	3,5	4,5 5,0 ⁴⁾ 6,0 ⁶⁾	8)	
	10/2,0	-		•	•	2,0	2,0 2,5 ³⁾	8)	1.	-	
	10/1,8	2,0	2,0	2,0	8)	1,5		2,5	3,0 3,5 ⁴⁾ 4,0 ⁶⁾	8)	
Kalksandvollstein KS,	28/2,0	3,0	ľ	Ť		5,0	11 1 11	2.€2	V=0	-	
gemäß EN 771-2:2011 z.B. KS Wemding	20/2,0	3,0	•			4,5	(.)	-	c=.	-	
12 DF (495x175x240) mittels Hammerbohren	20/1,8	•	•			-		6,5 8,5 ⁴⁾	4,0 11,0 ⁴⁾ 11,5 ⁶⁾	8)	
	16/1,8		8			•	1 To 1 Sept.	6,5 8,5 ⁴⁾	4,0 11,0 ⁴⁾ 11,5 ⁶⁾	8)	
	12/1,8		#		•	-	•	6,5 8,5 ⁴⁾	4,0 11,0 ⁴⁾ 11,5 ⁶⁾	8)	
	10/2,0	2,5	-		C#8	3,0	35=3	: <u>-</u>	n=	-	
	10/1,8		1	•	: = (2	-		5,5 7,0 ⁴⁾	3,5 9,0 ⁴⁾ 9,5 ⁶⁾	8)	
	8/1,8	•	•	٠	•	•		4,0 5,5 ⁴⁾	2,5 7,5 ⁴⁾	8)	
Teilsicherheitsbeiwert	$\gamma_{Mm}^{-1)}$					2,5					

In Abwesenheit anderer nationaler Regelungen.

fischer Rahmendübel SXR / SXRL	
Leistungen	Anhang C 4
Charakteristische Tragfähigkeit in Vollsteinmauerwerk	

Gültig nur im Temperaturbereich 30/50° C.

Nur für Randabstand c ≥ 150 mm; Zwischenwerte durch lineare Interpolation.

Nur für Randabstand c ≥ 200 mm; Zwischenwerte durch lineare Interpolation.

Nur für Randabstand c ≥ 150 mm für den Temperaturbereich 30/50 °C; Zwischenwerte durch lineare Interpolation.

Nur für Randabstand c ≥ 200 mm für den Temperaturbereich 30/50 °C; Zwischenwerte durch lineare Interpolation.

Werte können vom nächst kleineren h_{nom} übernommen werden.

Tabelle C5.1: Charakteristische Tragfähigkeit F_{Rk} in [kN] in Vollsteinmauerwerk (Nutzungskategorie "b")

Verankerungsgrund [Hersteller Bezeichnung]	Min. Druckfestig-			Chara	akteristis	sche Tragi 50/80°0		_{RK} [kN]				
Geometrie, DF oder Nenngröße	keit f _b	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL	14		
$(L \times B \times H)$ [mm]	[N/mm²] / Rohdichte					h _{nom} [mn	n]					
und Bohrverfahren	ρ [kg/dm³]	≥ 50	≥ 50	≥ 70	≥ 90	≥ 50	≥ 50	≥ 70	≥ 70	≥ 90		
Kalksandvollstein KS, gemäß EN 771-2:2011 z.B. KS Wemding 8 DF (495x115x240) mittels Hammerbohren	16/2,0		3,0 4,5 ³⁾ 5,0 ⁶⁾	3,5 5,0 ³⁾ 6,0 ⁴⁾ 6,5 ⁶⁾	8)		3,5 5,0 ³⁾ 6,0 ⁴⁾ 6,5 ⁶⁾	8)				
	12/2,0		2,5 3,0 ³⁾ 3,5 ⁵⁾	2,5 4,0 ³⁾ 4,5 ⁴⁾ 5,0 ⁶⁾	8)		2,5 4,0 ³⁾ 4,5 ⁴⁾ 5,0 ⁶⁾	8)	3.5	-		
Leichtbetonvollstein Vbl, gemäß EN 771-3:2011	4/1,4	-	8	-	•	0,75		2,5	0.5	ž		
z.B. KLB 2 DF (240x115x113)	2/1,4		-	-		0,4		1,2	·	-		
mittels Hammerbohren	2/1,2	0,9	0,4 0,5 ²⁾	0,9 1,2 ²⁾	В)	0,75 0,9 ³⁾	0,4	8)	0,9 1,2 ²⁾	8)		
Leichtbetonvollstein Vbl.	12/1,8	2,5	-	-				3,0 4,5 ³⁾		-		
gemäß EN 771-3:2011 z.B. KLB	10/1,8	2,5	-		•	5 3		2,5 3,5 ³⁾	70 5 5	-		
8 DF (490x240x115) mittels Hammerbohren	8/1,8	2,5	ě		•		•	2,0 3,0 ³⁾		E		
	8/1,6	-	1	•	-	3,0	•	-	×-	-		
	6/1,8	2,0	-	-		*	E	1,5 2,0 ³⁾	. .	-		
	6/1,6	o 	-	.=.1	3 .5 .2	2,0	5 . €k	-	6 .	-		
	4/1,8	1,2	#	,		-	H	0,9 1,5 ³⁾		-		
	2/1,2	-	-	-	-	1,2	74	3	94	-		
	2/1,0	1,2	-			(-	(.)	0=0	11 	-		
Teilsicherheitsbeiwert	γ _{Mm} 1)					2,5						

In Abwesenheit anderer nationaler Regelungen.

fischer Rahmendübel SXR / SXRL	
Leistungen Charakteristische Tragfähigkeit in Vollsteinmauerwerk	Anhang C 5

²⁾ Gültig nur im Temperaturbereich 30/50° C.

³⁾ Nur für Randabstand c ≥ 150 mm; Zwischenwerte durch lineare Interpolation.

⁴⁾ Nur für Randabstand c ≥ 200 mm; Zwischenwerte durch lineare Interpolation.

Nur für Randabstand c ≥ 150 mm für den Temperaturbereich 30/50 °C; Zwischenwerte durch lineare Interpolation.

Nur für Randabstand c ≥ 200 mm für den Temperaturbereich 30/50 °C; Zwischenwerte durch lineare Interpolation.

Werte können vom nächst kleineren h_{nom} übernommen werden.

Tabelle C6.1: Charakteristische Tragfähigkeit F_{Rk} in [kN] in Vollsteinmauerwerk (Nutzungskategorie "b")

	Min. Druckfestig-			Chara	akteristis	sche Tragf 50/80°C		_{RK} [kN]				
Geometrie, DF oder Nenngröße	keit f _b [N/mm²] /	SXR 8 SXRL 8				SXR 10 SXRL 10			SXRL 14			
$(L \times B \times H)$ [mm]	Rohdichte		h _{nom} [mm]									
und Bohrverfahren	ρ [kg/dm³]	≥ 50	≥ 50	≥ 70	≥ 90	≥ 50	≥ 50	≥ 70	≥ 70	≥ 90		
Leichtbetonvollstein Vbl, gemäß EN 771-3:2011	10/1,6		2,0 2,5 ²⁾	3,0 4,0 ⁵⁾	8)	2,5	3,0 3,5 ⁵⁾	7,5	3,5 6,0 ⁴⁾ 7,0 ⁶⁾	8)		
z.B. KLB 8 DF (245x240x240) mittels Hammerbohren	8/1,6		1,5 2,0 ²⁾	2,5 3,5 ⁵⁾	8)	2,5	2,5 3,0 ⁵⁾	6,0	3,0 5,0 ⁴⁾ 6,0 ⁶⁾	8)		
	6/1,6	į	1,2 1,5 ²⁾	2,0 2,5 ⁵⁾	8)	2,5	2,0	4,5	2,0 3,5 ⁴⁾ 4,5 ⁶⁾	8)		
	6/1,4	0,9	-	-	•		-	-	-	-		
	4/1,6	*	0,75 0,9 ²⁾	1,2 1,5 ⁵⁾	8)	0,9	1,2 1,5 ⁵⁾	3,0	1,5 2,5 ⁴⁾ 3,0 ⁶⁾	8)		
	4/1,4	0,6 0,75 ²⁾	30%		1	-	¥.		-	-		
	2/1,6	,	0,4 0,5 ²⁾	0,6 0,9 ⁵⁾	8)	0,5	0,6	1,5	ı	-		
Leichtbetonvollstein Vbl, gemäß EN 771-3:2011, z.B. Liapor Super-K 16 DF (500x240x248) mittels Hammerbohren	2/0,8		31				<u>/</u>	0,5	×	3		
Leichtbetonvollstein Vbl,	6/1,4		10	-	1	2,0 2,5 ⁴⁾	1	2,0 3,0 ³⁾	(/-	-		
z.B. <i>Tarmac</i> (440x100x215) mittels Hammerbohren	4/1,4		1	1	•	1,2 1,5 ⁴⁾	•	1,5 2,0 ³⁾	1	345		
Teilsicherheitsbeiwert	γ _{Mm} 1)					2,5						

In Abwesenheit anderer nationaler Regelungen.

fischer Rahmendübel SXR / SXRL	
Leistungen Charakteristische Tragfähigkeit in Vollsteinmauerwerk	Anhang C 6

Gültig nur im Temperaturbereich 30/50° C.

³⁾ Nur für Randabstand c ≥ 150 mm; Zwischenwerte durch lineare Interpolation.

⁴⁾ Nur für Randabstand c ≥ 200 mm; Zwischenwerte durch lineare Interpolation.

Nur für Randabstand c ≥ 150 mm für den Temperaturbereich 30/50 °C; Zwischenwerte durch lineare Interpolation.

⁶⁾ Nur für Randabstand c ≥ 200 mm für den Temperaturbereich 30/50 °C; Zwischenwerte durch lineare Interpolation.

Werte können vom nächst kleineren h_{nom} übernommen werden.

Tabelle C7.1: Charakteristische Tragfähigkeit F_{Rk} in [kN] in Vollsteinmauerwerk (Nutzungskategorie "b")

Verankerungsgrund [Hersteller Bezeichnung]	Min. Druckfestig-	Charakteristische Tragfähigkeit F_{RK} [kN] 50/80°C										
Geometrie, DF oder Nenngröße	keit f _b	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL	. 14		
$(L \times B \times H)$ [mm]	[N/mm²] / Rohdichte		h _{nom} [mm]									
und Bohrverfahren	ρ [kg/dm ³]	≥ 50	≥ 50	≥ 70	≥ 90	≥ 50	≥ 50	≥ 70	≥ 70	≥ 90		
Normalbetonvollstein	20/1,8	2,5	-	-	-	4,5	-	-	-	-		
Vbn, gemäß EN 771-3:2011	16/1,8	2,5				3,5	(■		2.=	-		
z.B. Adolf Blatt	12/1,8	2,5	-	-	-	3,0	-	-	-	-		
(240x245x240) mittels Hammerbohren	10/1,8	1,5		•	-	3,0	-	-	-	-		
millers Hammerbonien	8/1,8	1,5	-		7=1			:=	-	-		
	4/1,8	0,75	-	-		-	()			-		
Normalbetonvollstein Vbn, gemäß EN 771-3:2011 z.B. <i>Tarmac GB</i> (440x100x215) mittels Hammerbohren	16/1,8			-	5 = 5	4,0 4,5 ²⁾	:-	5,5	1-	-		
	10/1,8		-	·	-	2,5 3,0 ²⁾	n a	3,5	72	_		
Teilsicherheitsbeiwert	γ _{Mm} 1)					2,5						

Fußnoten siehe C7.2

Tabelle C7.2: Charakteristische Tragfähigkeit F_{Rk} in [kN] in Hohl- oder Lochsteinen (Nutzungskategorie "c")

[Hersteller Bezeichnung] Druckfe											
Geometrie, DF oder Nenngröße	keit f _b	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL	14	
$(L \times B \times H)$ [mm]	[N/mm²] / Rohdichte										
und Bohrverfahren	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90	
Hochlochziegel HLz Form B, gemäß EN 771-1:2011 z.B. Wienerberger	20/1,2	1,2	-	-	-	2,5 3,0 ⁵⁾	894	2,0	-	-	
	20/1,0	-	-	-	-	2,0	9.00	27 4	-	-	
	12/1,2	-	_	-	-	7 <u>-</u>	84	1,2	-	-	
\$\begin{array}{c ccccccccccccccccccccccccccccccccccc	10/1,2	-	6	*		1,5 2,0 ²⁾			-	H	
DF (240x115x113) mittels Drehbohren	10/1,0		-	-	-	1,2	:: <u>*</u>		-	-	
	8/1,2	0,5	•	-	•	•		-		-	
Teilsicherheitsbeiwert	γ _{Mm} 1)				0	2,5					

¹⁾ In Abwesenheit anderer nationaler Regelungen.

Nur für Randabstand c ≥ 150 mm für den Temperaturbereich 30/50 °C; Zwischenwerte durch lineare Interpolation.

fischer Rahmendübel SXR / SXRL	
Leistungen Charakteristische Tragfähigkeit in Hohl-oder Lochsteinen	Anhang C 7

Gültig nur im Temperaturbereich 30/50° C.

Tabelle C8.1: Charakteristische	Tragfähigkeit F _{Pv} in [kN	1 in Hohl- oder Lochsteinen	(Nutzungskategorie "c")

Verankerungsgrund [Hersteller Bezeichnung]	Min. Druckfestig-			Charakteristische Tragfähigkeit F _{RK} [kN] 50/80°C							
Geometrie, DF oder Nenngröße	keit f _b [N/mm²] /	SXR 8	,	SXRL 8 ⁷)	SXR 10	SXR	L 10	SXRL 14 ⁷⁾		
(L x B x H) [mm] und Bohrverfahren	Rohdichte		h _{nom} [mm]								
und Boniverlanien	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90	
Hochlochziegel HLz gemäß EN 771-1:2011	28/1,2		1,2 1,5 ²⁾	1,5 2,0 ²⁾	1,5 2,0 ²⁾	: . ₹:	: :	2,0	25€	-	
z.B. Wienerberger	20/1,2		0,9 1,2 ²⁾	0,9 1,2 ²⁾	1,2 1,5 ²⁾		•	1,2	-	-	
\$ 00000000 \$ 00000000000000000000000000	12/1,0	0,6	-		-	0,9	-	0,75	-	-	
2 DF (240×115×113)	10/1,2	-	0,6	0,6 0,75 ²	0,6 0,9 ²⁾	-	-	-	-	-	
mittels Drehbohren	10/1,0	-	-	-	-	0,75	:•	0,6	s=	-	
	8/1,0	0,4		-	*	0,6	-	1.0	-	-	
Hochlochziegel VHLz gemäß EN 771-1:2011, z.B. Wienerberger	48/1,6	1. 9 .			,≡ 36	-		X.	4,5 5,0 ²⁾	4,5 5,0 ²⁾	
26 15 7 240	28/1,6	ě	1	1	1200	12 0	9) <u>—</u>	2,5 3,0 ²⁾	2,5 3,0 ²⁾	
NF (240x115x71) mittels Drehbohren	20/1,6	•	1		ï		(4)		1,5 2,0 ²⁾	1,5 2,0 ²⁾	
Hochlochziegel VHLz gemäß EN 771-1:2011,	48/1,6		2,5	2,5	1,5 2,0 ²⁾	2,5		4,5	2 		
z.B. Wienerberger	36/1,6		2,0	2,0	1,2 1,5 ²⁾	2,0		3,0	-	=	
	28/1,6	1	1,5	1,5	0,9 1,2 ²⁾	1,5	•	2,5	-	-	
[5] 7 240 22	20/1,6		0,9	0,9	0,6 0,9 ²⁾	0,9	•	1,5	-	÷	
2 DF (240x115x113) mittels Drehbohren	12/1,6	-	0,6	0,6	0,4 0,5 ²⁾	0,6	9#8	0,9	/ =	-	
	10/1,6			-			•	0,9	•	Ę	
Teilsicherheitsbeiwert	γ _{Mm} 1)					2,5					

In Abwesenheit anderer nationaler Regelungen.

⁷⁾ Bei Zwischenverankerungstiefen muss die kleinere Lastklasse der angrenzenden Verankerungstiefen verwendet werden.

fischer Rahmendübel SXR / SXRL	
Leistungen Charakteristische Tragfähigkeit in Hohl-oder Lochsteinen	Anhang C 8

²⁾ Gültig nur im Temperaturbereich 30/50° C.

Nur für Randabstand c ≥ 150 mm; Zwischenwerte durch lineare Interpolation.

⁴⁾ Nur für Randabstand c ≥ 200 mm; Zwischenwerte durch lineare Interpolation.

Nur für Randabstand c ≥ 150 mm für den Temperaturbereich 30/50 °C; Zwischenwerte durch lineare Interpolation.

⁶⁾ Nur für Randabstand c ≥ 200 mm für den Temperaturbereich 30/50 °C; Zwischenwerte durch lineare Interpolation.

Tabelle C9.1: Charakteristische Tragfähigkeit F_{Rk} in [kN] in Hohl- oder Lochsteinen (Nutzungskategorie "c")

Verankerungsgrund [Hersteller Bezeichnung]	Min. Druckfestig-			Chara	akteristis	sche Tragt 50/80°0	fähigkeit F	RK [kN]		
Geometrie, DF	keit f _b	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL	14
oder Nenngröße (L x B x H) [mm]	[N/mm²] / Rohdichte	NATIONAL PROPERTY.				h _{nom} [mn				UPVICE.
und Bohrverfahren	ρ [kg/dm ³]	50	50	70	90	50	50	70	70	90
Hochlochziegel HLz gemäß EN 771 -1:2011+A1:2014, z.B. Wienerberger, BS	28/1,5	2,5	-	-	•	2,5	-	-	-	
9 8 240	20/1,5	1,2 1,5 ²⁾		-	:=X	2,0	ï		,	-
DF (240x110x52) mittels Hammerbohren	10/1,5	0,6 0,9 ²⁾	•		=	1,2	3	-		÷
Hochlochziegel HLz Form B, gemäß EN 771-1:2011 z.B. Schlagmann	8/0,9	0,9	•	300	¥) .	(10)			
	6/0,9	0,6		341		*			(4)	ě
10 DF (440x240x260) mittels Drehbohren	4/0,9	0,4		1	1	•	•	•	•	
Hochlochziegel HLz gemäß EN 771-1:2011 z.B. Schlagmann Poroton T14	6/0,7		3		¥	0,3 0,4 ²⁾		0,5	3	•
Teilsicherheitsbeiwert	γ _{Mm} 1)					2,5				

In Abwesenheit anderer nationaler Regelungen.

fischer Rahmendübel SXR / SXRL	
Leistungen	Anhang C 9
Charakteristische Tragfähigkeit in Hohl-oder Lochsteinen	

²⁾ Gültig nur im Temperaturbereich 30/50° C.

Tabelle C10.1: Charakteristische Tragfähigkeit F_{Rk} in [kN] in Hohl- oder Lochsteinen (Nutzungskategorie "c")

Verankerungsgrund [Hersteller Bezeichnung]				Char	akteristis	sche Tragf 50/80°C		RK [KN]		
Geometrie, DF oder Nenngröße	keit f _b	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL	. 14
(L x B x H) [mm]	[N/mm²] / Rohdichte					h _{nom} [mn	n]			
und Bohrverfahren	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90
Hochlochziegel HLz Form B, gemäß EN 771-1:2011, z.B. Schlagmann Planfüllziegel	6/0,7	1,2			ĸ	2,0	¥	287		
	4/0,7	0,75	1			•	36	(4)	•	
12 DF (380x240x240) mittels Drehbohren	2/0,7	0,4	(9)		3		*	•		ŧ
Hochlochziegel HLz gemäß EN 771-1:2011 z.B. Schlagmann	12/1,0		į	-	ī		. = 8	1 8 3	2,0	2,5
3	10/1,0			4	1	•	1	,	2,0	2,0
DF (240x175x113) mittels Drehbohren	8/1,0	9	-	_	ī		2	=	1,5	1,5
	6/1,0	1	1	-	ī	•	ï	1-1	1,2	1,2
Hochlochziegel HLz gemäß EN 771-1:2011, z.B. Schlagmann Poroton S11	8/0,8	.₩/		-				1,5		
S 20 20 21 305	6/0,8	i	(2	•	ä	•	•	1,2	9 4 1	-
12 DF (365x250x240) mittels Drehbohren	4/0,8	*			•	*	<u>(2)</u>	0,75		-
Teilsicherheitsbeiwert	γ _{Mm} 1)					2,5				

In Abwesenheit anderer nationaler Regelungen.

fischer Rahmendübel SXR / SXRL	
Leistungen Charakteristische Tragfähigkeit in Hohl-oder Lochsteinen	Anhang C 10

Verankerungsgrund [Hersteller Bezeichnung]	Min. Druckfestig-			Chara	akteristis	sche Tragt 50/80°0		RK [KN]		
Geometrie, DF oder Nenngröße	keit f _b	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL	14
(L x B x H) [mm]	[N/mm²] / Rohdichte					h _{nom} [mn	n]			
und Bohrverfahren	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90
Hochlochziegel HLz gemäß EN 771-1:2011 z.B. Schlagmann Poroton S10	6/0,7	•	-	-	٠	•		1,5	-	-
10 DF (300x250x240) mittels Drehbohren	4/0,7	•	(<u>-</u>		-			0,9	я	ā
Hochlochziegel HLz gemäß EN 771-1:2011 z.B. Schlagmann Poroton T8	4/0,6		-	-	ĭ			1,2	-	-
12 DF (365x248x240) mittels Drehbohren	2/0,6		1	(4)			•	0,6		
Hochlochziegel HLz gemäß EN 771-1:2011, z.B. Hörl & Hartmann Coriso WS 09	6/0,8	•	•		•	•	[/•]	0,9		•
\$20	4/0,8	•	•	•		-	•	0,6	9	-
(360x245x240) mittels Drehbohren	2/0,8	•	-		•	-		0,3		-
Teilsicherheitsbeiwert	γ _{Mm} 1)					2,5				

fischer Rahmendübel SXR / SXRL

Leistungen
Charakteristische Tragfähigkeit in Hohl-oder Lochsteinen

Tabelle C12.1: Charakteristische Tragfähigkeit F_{Rk} in [kN] in Hohl- oder Lochsteinen (Nutzungskategorie "c")

Verankerungsgrund [Hersteller Bezeichnung]				Chara	akteristis	sche Tragf 50/80°C		RK [kN]			
Geometrie, DF oder Nenngröße	keit f _b [N/mm²] /	SXR 8	SXR 8 SXRL 8 ⁷⁾ SXR 10 SXRL 10							14 ⁷⁾	
(L x B x H) [mm] und Bohrverfahren	Rohdichte					h _{nom} [mn	ո]				
und Bomvenamen	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90	
Hochlochziegel HLz gemäß EN 771-1:2011 z.B. Doppio Uni IT Wienerberger	20/0,9	3	1,2	0,9 1,5 ²⁾	1,5 2,0 ²⁾	•	7	3	3	-	
	16/0,9	Ē	0,9	0,9 1,2 ²⁾	1,2 1,5 ²⁾	•	į		Į.	-	
(250x120x190) mittels Drehbohren	12/0,9		0,75	0,6 0,75 ²⁾	0,9 1,2 ²⁾	ē	(Tibe)	-	12	-	
Hochlochziegel HLz gemäß NF-P 13-301 EN 771-1:2011, z.B. Imerys Gelimatic	6/0,6		E			0,6 0,75 ⁶⁾	*	1,5	∷= 1	-	
B ====================================	4/0,6	•	1	•	9	•	ě	0,9	-	-	
(500x200x270) mittels Drehbohren	2/0,6	,	1	ī	3	•	i	0,5	į	-	
Hochlochziegel HLz gemäß NF-P 13-301, EN 771-1:2011,	10/0,6		1		•	1,2	•	1,5		-	
z.B. Imerys Optibric	8/0,6			-		•		1,2	.=	-	
2 2 3 56	6/0,6		90	•				0,9	-	Ē	
(560x200x275) mittels Drehbohren	4/0,6		í			. ₩//	×	0,6	() =	-	
Teilsicherheitsbeiwert	γ _{Mm} 1)					2,5					

In Abwesenheit anderer nationaler Regelungen.

Bei Zwischenverankerungstiefen muss die kleinere Lastklasse der angrenzenden Verankerungstiefen verwendet werden.

Anhang C 12

Gültig nur im Temperaturbereich 30/50° C.

⁶⁾ Nur für Randabstand c ≥ 200 mm für den Temperaturbereich 30/50 °C; Zwischenwerte durch lineare Interpolation.

Tabelle C13.1: Charakteristische Tragfähigkeit F_{Rk} in [kN] in Hohl- oder Lochsteinen (Nutzungskategorie "c")

SXR 8 SXR 10 SXRL 10 SXRL 14	Verankerungsgrund [Hersteller Bezeichnung]	Min. Druckfestig-			Chara	akteristis	sche Tragf 50/80°C		_{RK} [kN]		
(1 x B x H) [mm] Rohdichte p kg/dm³] 50 50 70 90 50 50 70 90 90 90 90 90 90 9	Geometrie, DF	keit f _b	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL	14
Hochlochziegel HLz genäß EN 771-1:2011, z.B. Bouyer Leroux BGV (570x200x315) mittels Drehbohren Hochlochziegel HLz genäß EN 771-1:2011, z.B. Wienerberger Porotherm 30 R 10/0,7 0,6 0,6 0,75 0,6 0,75 0,6 0,75 0,6 0,75 0,6 0,75 0,6 0,75 0,6 0,75 0,6 0,75 0,6 0,75 0,6 0,75 0,6 0,75 0,6 0,75 0,6 0,75 0,6 0,75 0,6 0,75 0,6 0,75	(L x B x H) [mm]						h _{nom} [mm	1]			
gemäß EN 771-1:2011,	und Bohrverfahren		50	50	70	90	50	50	70	70	90
Hochlochziegel HLz gemäß EN 771-1:2011, z.B. Wienerberger Porotherm 30 R (370x300x250) mittels Drehbohren Hochlochziegel HLz gemäß NF-P 13-301, EN 771-1:2011, z.B. Wienerberger Porotherm GF R20 (560x200x275)	gemäß EN 771-1:2011, z.B. Bouyer Leroux BGV		,	1	, C		0.9^{3}	•	0,9	į.	-
gemäß EN 771-1:2011, z.B. Wienerberger Porotherm 30 R 10/0,7 0,5 0,63) (370x300x250) mittels Drehbohren Hochlochziegel HLz gemäß NF-P 13-301, EN 771-1:2011, z.B. Wienerberger Porotherm GF R20 (560x200x275)	Anna contra de la contra del la contra de la contra de la contra del la contr										
gemäß NF-P 13-301, EN 771-1:2011, z.B. Wienerberger Porotherm GF R20 10/0,7 0,6 0,75³) - 0,9 (560x200x275)	gemäß EN 771-1:2011, z.B. Wienerberger Porotherm 30 R (370x300x250) mittels Drehbohren	10/0,7		•	Ûc	9()	0,5 0,6 ³⁾		*	3 8	-
Teilsicherheitsbeiwert γ_{Mm}^{-1} 2,5	gemäß NF-P 13-301, EN 771-1:2011, z.B. Wienerberger Porotherm GF R20 (560x200x275) mittels Drehbohren		•	·	•	•	0,75 ³⁾	•	0,9		-

In Abwesenheit anderer nationaler Regelungen.

Bei Zwischenverankerungstiefen muss die kleinere Lastklasse der angrenzenden Verankerungstiefen verwendet werden.

Anhang C 13

Nur für Randabstand c ≥ 150 mm; Zwischenwerte durch lineare Interpolation.

Nur für Randabstand c ≥ 150 mm für den Temperaturbereich 30/50 °C; Zwischenwerte durch lineare Interpolation.

Tabelle C14.1: Charakteristische Tragfähigkeit F_{Rk} in [kN] in Hohl- oder Lochsteinen (Nutzungskategorie "c")

Verankerungsgrund [Hersteller Bezeichnung]	Min. Druckfestig-			Chara	akteristis	sche Tragf 50/80°C		F _{RK} [kN]		
Geometrie, DF oder Nenngröße	keit f _b	SXR 8		SXRL 8		SXR 10	SXR	RL 10	SXRL	14
$(L \times B \times H)$ [mm]	[N/mm²] / Rohdichte					h _{nom} [mm	ո]			
und Bohrverfahren	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90
Hochlochziegel HLz gemäß EN 771-1:2011, z.B. Terreal Calibric	8/0,7	,	•	¥.		0,6 0,75 ⁶⁾	-	0,9	81 - 1	-
8 R S 33 500	6/0,7	,	•	5			: •	0,75	a =	-
(500x200x220) mittels Drehbohren	4/0,7	٠	-	-	: ■0	-	-	0,4	-	-
Deckenziegel gemäß DIN 4159:2014-05, z.B. Hörl & Hartmann Deckenziegel	10/0,7		316		36	•		2,0	9 <u>4</u>	ä
	8/0,7		·	Ē	Ü		-	1,5	8 . =(-
(250x250x190) mittels Drehbohren	6/0,7		1	9	3	•	°¥°	1,2	⊘ ■0	-
Deckenziegel gemäß EN 15037-3:2011, z.B. Hörl & Hartmann Decken-Einhängeziegel	8/0,7	•	-	ï	•	•	(-)	1,5	a=	
B 15 15 15 15 15 15 15 15 15 15 15 15 15	6/0,7		-	■ 8	:# 0		.=:	1,2	3=	-
(520x250x180) mittels Drehbohren	4/0,7		1		•	•	•	0,9		
Teilsicherheitsbeiwert	γ _{Mm} 1)					2,5				

In Abwesenheit anderer nationaler Regelungen.

⁶⁾ Nur für Randabstand c ≥ 200 mm für den Temperaturbereich 30/50 °C; Zwischenwerte durch lineare Interpolation.

fischer Rahmendübel SXR / SXRL	
Leistungen Charakteristische Tragfähigkeit in Hohl-oder Lochsteinen	Anhang C 14

Nur für Randabstand c ≥ 150 mm; Zwischenwerte durch lineare Interpolation.

	Tabelle C15.1: Charakteristi	sche Tragfähigkeit F _{Rk} in [k	(N] in Hohl- oder	Lochsteinen (Nutzu	ıngskategorie "c")
11		(C.C.)			3

Verankerungsgrund [Hersteller Bezeichnung]				Chara	akteristis	sche Tragt 50/80°0		RK [kN]		
Geometrie, DF	keit f _b	SXR 8		SXRL 8 ⁷)	SXR 10	SXR	L 10	SXRL	14 ⁷⁾
oder Nenngröße (L x B x H) [mm]	[N/mm²] / Rohdichte					h _{nom} [mn	nl			
und Bohrverfahren	ρ [kg/dm ³]	50	50	70	90	50	50	70	70	90
Kalksandlochstein KSL gemäß	20/1,4	•	2,0	2,5	2,5	•		-	(#.	•
EN 771-2:2011 z.B. KS Wemding	12/1,4	2,0	1,2	1,5	1,5	2,0 2,5 ²⁾		2,5	1,5 2,0 ²⁾	2,5
	10/1,4	1,5	1			2,0	1	2,0	1,5	2,0
30 25 240	8/1,4	1,2	1		-	1,5		1,5	1,2	1,5
2 DF (240x115x113) mittels Hammerbohren	6/1,4	0,9	-		: + ::		: .	N##	0,9	1,2
Kalksandlochstein KSL gemäß	20/1,4	1,2 1,5 ²⁾	1	#0	 0	/= (-	1	72 4 7	-
N 771-2:2011 .B. KS Wemding	16/1,4	0,9 1,2 ²⁾	4	•	•		•	2,0		-
E 245 05 50	12/1,4	0,75 0,9 ²⁾		9)	•		-	1,5		-
35 37	10/1,4	0,6 0,75 ²⁾						1,2	≈ =	-
3 DF (240x175x113) mittels Hammerbohren	8/1,4	0,5 0,6 ²⁾	•	Ī	•		1. 	1,0	% ■	-
	6/1,4			•	•		•	0,75	-	
Kalksandlochstein KSL gemäß EN 771-2:2011 z.B. KS Wemding	20/1,4	•	0,6 0,75 ²⁾	1,5 2,0 ²⁾	0,9 1,2 ²⁾	•		3,5	3,5 4,0 ²⁾	1,5 2,0
	12/1,4	·	0,4 0,5 ²⁾	0,9 1,2 ²⁾	0,5 0,75 ²⁾	•	į	2,0	2,0 2,5 ²⁾	0,9 1,2
9 DF (380x175x240) mittels Hammerbohren	10/1,4	0-1	-		•		•	2,0	1,5 2,0 ²⁾	0,7 0,9
Teilsicherheitsbeiwert	γ _{Mm} 1)		- 1			2,5				•

In Abwesenheit anderer nationaler Regelungen.

fischer Rahmendübel SXR / SXRL	
Leistungen Charakteristische Tragfähigkeit in Hohl-oder Lochsteinen	Anhang C 15

Gültig nur im Temperaturbereich 30/50° C.

⁷⁾ Bei Zwischenverankerungstiefen muss die kleinere Lastklasse der angrenzenden Verankerungstiefen verwendet werden.

2,0

1,5

1,2

0,9

2,5

[Hersteller Bezeichnung] Druckfes				Chara	akteristi			-RK [KIN]												
Geometrie, DF oder Nenngröße	keit f _b	SXR 8		SXRL 8		SXR 10	XR 10 SXRL 10		SXRL 14											
(L x B x H) [mm]	[N/mm²] / Rohdichte			1116		h _{nom} [mm	1]													
und Bohrverfahren	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90										
EN 771-2:2011 z.B. KS Wemding 1	16/1,4	2,0	÷	<u>.</u>	•	3,0 3,5 ⁵⁾	•	-	-	-										
	12/1,4	1,5		•	•	3#/		•	-	-										
	10/1,4	1,2	-	ä	-	1,5		-	-	-										
DF 300	8/1,4	0,9	-	-	-	-	•			-										
(300x240x113) mittels Hammerbohren	6/1,4	0,75 0,9 ²⁾	=	-	-	-	-	•	-	-										
Kalksandlochstein KSL gemäß EN 771-2:2011	6/1,2	1,2 1,5 ²⁾	-	-:	(₩.)	1,5 2,0 ³⁾ 2,5 ⁵⁾	i.e.		×=	-										

Tabelle C16.1: Charakteristische Tragfähigkeit F_{Rk} in [kN] in Hohl- oder Lochsteinen (Nutzungskategorie "c")

DF

z.B. KS Wemding, P10

mittels Hammerbohren

Kalksandlochstein

(495x98x245)

KSL gemäß

EN 771-2:2011 z.B. KS Wemding

(250x238x240)

mittels Hammerbohren

Teilsicherheitsbeiwert

0,75

0,92)

0,4

0,52)

4/1,2

2/1,2

12/1.4

10/1,4

8/1,4

6/1,4

γMm

⁵⁾ Nur für Randabstand c ≥ 150 mm für den Temperaturbereich 30/50 °C; Zwischenwerte durch lineare Interpolation.

fischer Rahmendübel SXR / SXRL	
Leistungen Charakteristische Tragfähigkeit in Hohl-oder Lochsteinen	Anhang C 16

In Abwesenheit anderer nationaler Regelungen.

²⁾ Gültig nur im Temperaturbereich 30/50° C.

³⁾ Nur für Randabstand c ≥ 150 mm; Zwischenwerte durch lineare Interpolation.

Verankerungsgrund [Hersteller Bezeichnung]			Charakteristische Tragfähigkeit F _{RK} [kN] 50/80°C									
Geometrie, DF oder Nenngröße	keit f _b [N/mm²] /	SXR 8	:	SXRL 8 ⁷)	SXR 10	SXR	L 10	SXRL	14 ⁷⁾		
(L x B x H) [mm] und Bohrverfahren	Rohdichte		h _{nom} [mm]									
and Bom Vonamen	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90		
Hohlblock Leichtbeton Hbl gemäß EN 771-3, z.B. KLB (300x240x240) mittels Hammerbohren	2/1,2		-	1	·	1,5	•	•	± -	-		
Hohlblock Leichtbeton Hbl gemäß EN 771-3,	10/1,2	2,5	2,0	2,0 2,5 ²⁾	0,4 0,6 ²⁾	-	j.	2,5	3,0	201 - - -		
z.B. Roadstone masonry	8/1,2	2,0	1,5	1,5 2,0 ²⁾	0,3 0,5 ²⁾	2,5	-	2,0	2,5	-		

1,2

2,5

1,5

0,75

2,0

2.52)

1,5²⁾

0,3

1,5

0,9

0,5

 $0,6^{2)}$

1,5

 $2,0^{2)}$

1,2²⁾

 $2,0^{2)}$

2,0

1,5

0.9

0,5

2,5

2,5

1,5

0,75

2,0

2,5

2,5²⁾

2,0

1,2

0,6

1,2

1,5²⁾

-

0,75

1,2

1,5

0,9

0,5

1,5

 $2,0^{2)}$

Tabelle C17.1: Charakteristische Tragfähigkeit F_{Rk} in [kN] in Hohl- oder Lochsteinen (Nutzungskategorie "c")

6/1,2

4/1,2

2/1,2

6/0,8

4/0,8

2/0,8

2/0,7

γ_{Mm}¹⁾

1,5

35

(440x210x215) mittels Hammerbohren

Hbl gemäß

(500x240x240)

mittels Drehbohren

Teilsicherheitsbeiwert

EN 771-3, z.B. Knobel 440

Hohlblock Leichtbeton

Bei Zwischenverankerungstiefen muss die kleinere Lastklasse der angrenzenden Verankerungstiefen verwendet werden.

fischer Rahmendübel SXR / SXRL	
Leistungen Charakteristische Tragfähigkeit in Hohl-oder Lochsteinen	Anhang C 17

In Abwesenheit anderer nationaler Regelungen.

Gültig nur im Temperaturbereich 30/50° C.

Tabelle C18.1: Charakteristische Tragfähigkeit F_{Rk} in [kN] in Hohl- oder Lochsteinen (Nutzungskategorie "c")

Verankerungsgrund [Hersteller Bezeichnung]	Min. Druckfestig-	Charakteristische Tragfähigkeit F _{RK} [kN] 50/80°C								
Geometrie, DF	keit f _b	SXR 8		SXRL 8		SXR 10		L 10	SXRL	14
oder Nenngröße (L x B x H) [mm]	[N/mm²]/					h _{nom} [mn				
und Bohrverfahren	Rohdichte	50		70				70	70	
	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90
Hohlblock Leichtbeton Hbl gemäß EN 771-3, z.B. KLB (360x250x250) mittels Hammerbohren	2/0,9		-	- 1	•	•	-	0,75		-
Hohlblock Leichtbeton Hbl gemäß EN 771-3:2011, z.B. KLB 31 80 360 (360x240x240) mittels Hammerbohren	6/1,0	1,5	-		j.	¥	,	1	2	-
Hohlblock Leichtbeton Hbl gemäß EN 771-3:2011, z.B. Sepa Parpaing	6/0,9		-	· ·	5 = 7			0,5	y =	-
(500x200x200) mittels Drehbohren	4/0,9	0,3 0,4 ²⁾	÷		•	0,9 1,2 ⁴⁾ 1,5 ⁶⁾	-	0,3	3	-
Teilsicherheitsbeiwert	γ _{Mm} 1)		*			2,5				

In Abwesenheit anderer nationaler Regelungen.

Nur für Randabstand c ≥ 200 mm für den Temperaturbereich 30/50 °C; Zwischenwerte durch lineare Interpolation.

fischer Rahmendübel SXR / SXRL	
Leistungen Charakteristische Tragfähigkeit in Hohl-oder Lochsteinen	Anhang C 18

Gültig nur im Temperaturbereich 30/50° C.

Nur für Randabstand c ≥ 200 mm; Zwischenwerte durch lineare Interpolation.

Tabelle C19.1: Charakteristische Tragfähigkeit F_{Rk} in [kN] in Hohl- oder Lochsteinen (Nutzungskategorie "c")

Verankerungsgrund [Hersteller Bezeichnung]	Min. Druckfestig-			Chara	akteristis	sche Tragf 50/80°C		RK [kN]				
Geometrie, DF oder Nenngröße	keit f _b	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL	14		
(L x B x H) [mm]	[N/mm²] / Rohdichte		h _{nom} [mm]									
und Bohrverfahren	ρ [kg/dm³]	50	50	70	90	50	50	70	70	90		
Hohlblock Normalbeton Hbn gemäß EN 771-3, z.B. Adolf Blatt	6/1,6		4:	Ã.	3	2,5		2,0		311		
260	4/1,6		1	ja j		1,5	-	1,2	(4		
(300x240x240) mittels Hammerbohren	2/1,6	•	1	9	ş	0,75	æ	0,6	8	1		
Wärmedämmblock WDB z.B. Gisoton (390x240x240) mittels Hammerbohren	2/0,7	1	-	ű.	5	1,5	-			-		
Teilsicherheitsbeiwert	γ _{Mm} 1)	2,5										

In Abwesenheit anderer nationaler Regelungen.

fischer Rahmendübel SXR / SXRL

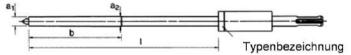
Leistungen
Charakteristische Tragfähigkeit in Hohl-oder Lochsteinen

Anhang C 19

Gültig nur im Temperaturbereich 30/50° C.

⁴⁾ Nur für Randabstand c ≥ 200 mm; Zwischenwerte durch lineare Interpolation.

⁶⁾ Nur für Randabstand c ≥ 200 mm für den Temperaturbereich 30/50 °C; Zwischenwerte durch lineare Interpolation.


Tabelle C20.1: Charakteristische Tragfähigkeit F_{Rk} in [kN] in Porenbeton (PB) (Nutzungskategorie "d")

Verankerungsgrund [Hersteller Bezeichnung]	Min. Druckfestig-		Charakteristische Tragfähigkeit F_{RK} [kN] 50/80°C								
Geometrie, DF oder Nenngröße	keit f _b [N/mm²] /	SXR 8		SXRL 8		SXR 10	SXR	L 10	SXRL	14	
$(L \times B \times H)$ [mm]	Rohdichte		h _{nom} [mm]								
und Bohrverfahren	ρ [kg/dm³]	≥ 50	≥ 50	≥ 70	≥ 90	≥ 50	≥ 70	≥ 90	≥ 70	≥ 90	
Porenbetonblöcke, PB gemäß EN 771-4:2011 z.B. (500x120x300) z.B. (500x250x300)	≥ 6		3	1,5 3,0 ⁵⁾	2,0 3,0 ⁵⁾	0,75 0,9 ⁵⁾	2,0 2,5 ⁶⁾ 3,0 ⁴⁾	2,5 3,0 ⁶⁾ 4,0 ⁴⁾	4,0	5,0	
mittels Hammerbohren	≥ 4		4:	0,9 1,5 ⁵⁾	1,2 1,5 ⁵⁾	0,75 0,9 ²⁾	1,2 1,5 ⁶⁾ 2,0 ⁴⁾	1,5 2,5 ⁴⁾	2,5	3,0	
	≥ 3	•	1	0,6 0,9 ⁵⁾	0,9 1,2 ⁵⁾	0,4 ³⁾ 0,5 ²⁾³⁾	0,9 1,2 ⁴⁾	0,9 1,2 ⁶⁾ 1,5 ⁴⁾	1,5	2,0	
	≥ 2	•		0,4	0,6	0,4 ³⁾ 0,5 ²⁾³⁾	0,5 0,75 ⁴⁾	0,6 0,9 ⁴⁾	0,9	1,2	
Teilsicherheitsbeiwert γ _{MAAC} ¹⁾ 2,0											

In Abwesenheit anderer nationaler Regelungen.

Tabelle C20.2: Zuordnung Porenbetonstößel - Dübeltyp (Länge) nur für Porenbeton PB f_b < 4N/mm² SXR 10

Porenbeton	stößel nur für S	XR 10 h _{nom} = 50	mm in PB f _b < 4N	/mm²	Dübeltyp
Тур	a ₁	a ₂	b	1	(Länge)
GBS 10 x 80		10	80	85	SXR 10 x 52 SXR 10 x 60 SXR 10 x 80
GBS 10 x 100				105	SXR 10 x 100
GBS 10 x 135	9			140	SXR 10 x 120
GBS 10 x 160	9		90	165	SXR 10 x 140 SXR 10 x 160
GBS 10 x 185				190	SXR 10 x 180
GBS 10 x 230				235	SXR 10 x 200 SXR 10 x 230

fischer Rahmendübel SXR / SXRL	
Leistungen Charakteristische Tragfähigkeit in Porenbeton	Anhang C 20

²⁾ Gültig nur im Temperaturbereich 30/50° C.

Für Befestigungen in Porenbeton mit einem Nennwert der Druckfestigkeit f_{ck} < 4 N/mm² ist das Bohrloch mit dem zugehörigen Porenbetonstößel gemäß Tabelle C20.2 herzustellen.

⁴⁾ Werte gültig für Bauteildicke h_{min} ≥ 175 mm.

⁵⁾ Nur für Randabstand c ≥ 120 mm.

⁶⁾ Nur für Randabstand c ≥ 180 mm.