



#### Zulassungsstelle für Bauprodukte und Bauarten

#### **Bautechnisches Prüfamt**

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts



# **Europäische Technische Bewertung**

# ETA-12/0258 vom 23. März 2015

### **Allgemeiner Teil**

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von

Deutsches Institut für Bautechnik

fischer Superbond

Verbunddübel zur Verankerung im Beton

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

32 Seiten, davon 3 Anhänge

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 5: "Verbunddübel", April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.



# Europäische Technische Bewertung ETA-12/0258

Seite 2 von 32 | 23. März 2015

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

25717.15 8.06.01-286/14



Europäische Technische Bewertung ETA-12/0258

Seite 3 von 32 | 23. März 2015

#### **Besonderer Teil**

### 1 Technische Beschreibung des Produkts

Das fischer Injektionssystem FIS SB ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel fischer FIS SB und einem Stahlteil besteht. Das Stahlteil besteht aus

- einer fischer Gewindestange FIS A oder RGM in den Größen M8 bis M30,
- einem fischer Innengewindeanker RG MI in den Größen M8 bis M20,
- einem Betonrippenstahl in den Größen φ = 8 bis 28 mm oder
- einem fischer Bewehrungsanker FRA in den Größen M12 bis M24.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

# 2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

### 3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

#### 3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

| Wesentliches Merkmal                                                                                                                                | Leistung                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Charakteristische Werte unter statischen und quasi-<br>statischen Einwirkungen für Bemessung nach<br>TR 029 oder CEN/TS 1992-4:2009, Verschiebungen | Siehe Anhang C 1 bis C 10  |
| Charakteristische Werte für die seismischen Leistungskategorien C1 und C2 für die Bemessung nach Technical Report TR 045, Verschiebungen            | Siehe Anhang C 11 bis C 13 |

### 3.2 Brandschutz (BWR 2)

| Wesentliches Merkmal | Leistung                                          |
|----------------------|---------------------------------------------------|
| Brandverhalten       | Der Dübel erfüllt die Anforderungen der Klasse A1 |
| Feuerwiderstand      | Keine Leistung festgestellt (KLF)                 |

**Z5717.15** 8.06.01-286/14



# Europäische Technische Bewertung ETA-12/0258

Seite 4 von 32 | 23. März 2015

## 3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Bezüglich gefährlicher Stoffe können die Produkte im Geltungsbereich dieser Europäischen Technischen Bewertung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Verordnung (EU) Nr. 305/2011 zu erfüllen, müssen gegebenenfalls diese Anforderungen ebenfalls eingehalten werden.

### 3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

## 3.5 Schallschutz (BWR 5)

Nicht zutreffend.

### 3.6 Energieeinsparung und Wärmeschutz (BWR 6)

Nicht zutreffend.

### 3.7 Nachhaltige Nutzung der natürlichen Ressourcen (BWR 7)

Die nachhaltige Nutzung der natürlichen Ressourcen wurde nicht untersucht.

#### 3.8 Allgemeine Aspekte

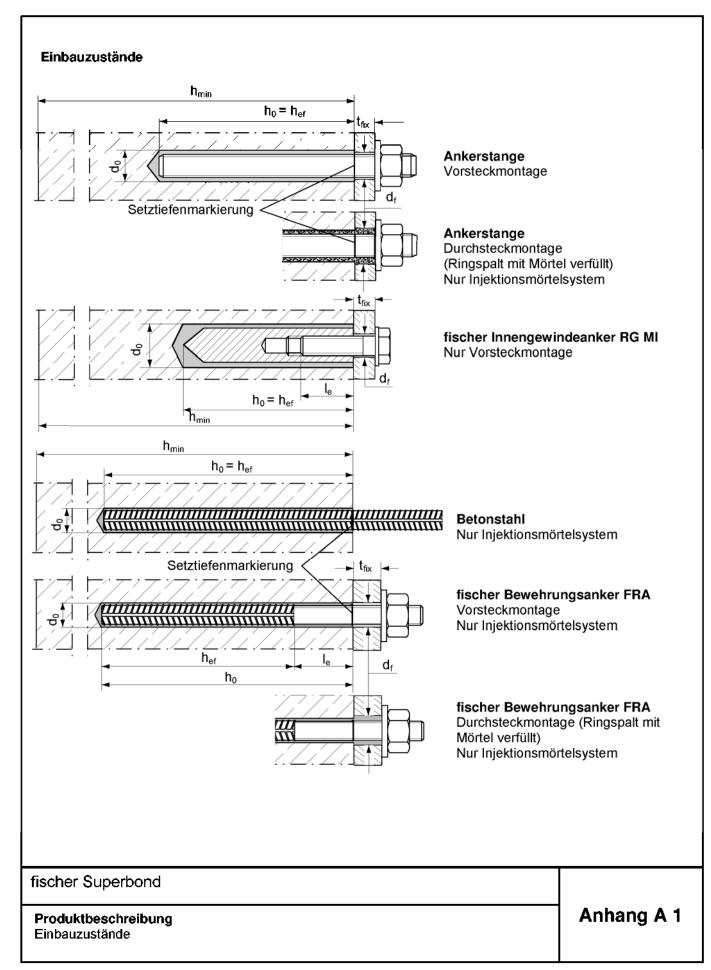
Der Nachweis der Dauerhaftigkeit ist Bestandteil der Prüfung der Wesentlichen Merkmale. Die Dauerhaftigkeit ist nur sichergestellt, wenn die Angaben zum Verwendungszweck gemäß Anhang B beachtet werden.

# 4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

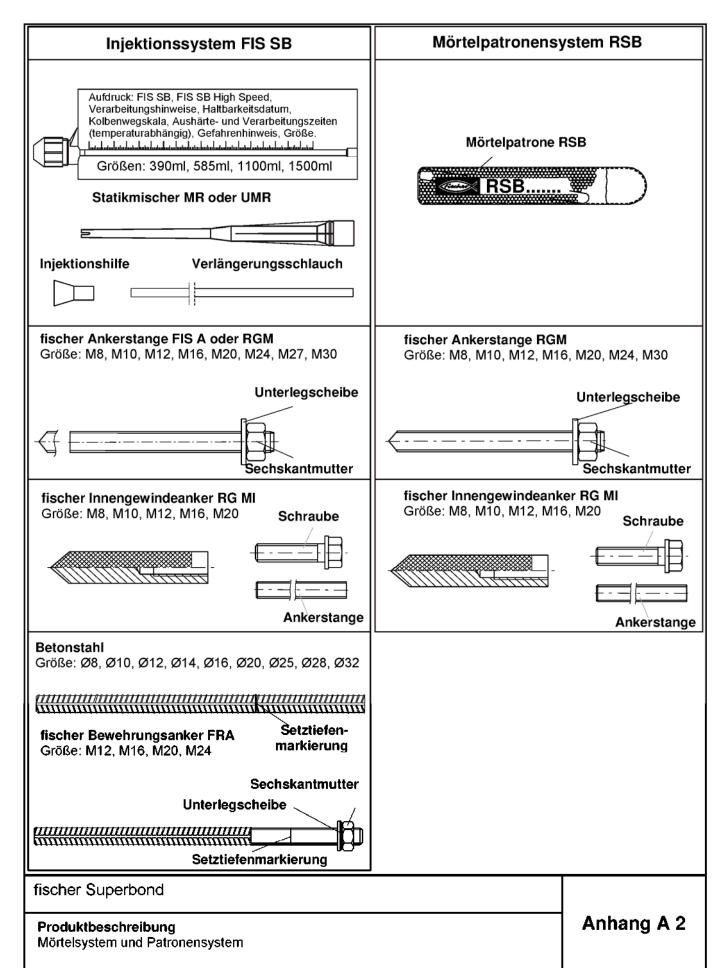
Gemäß Entscheidung der Kommission vom 24. Juni 1996 (96/582/EG) (ABI. L 254 vom 08.10.96, S. 62-65) gilt das System zur Bewertung und Überprüfung der Leistungsbeständigkeit (AVCP) (siehe Anhang V in Verbindung mit Artikel 65 Absatz 2 der Verordnung (EU) Nr. 305/2011) entsprechend der folgenden Tabelle.

| Produkt                                                    | Verwendungszweck                                                                                                                 | Stufe oder<br>Klasse | System |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------|--------|
| Metallanker zur<br>Verwendung in Beton<br>(hoch belastbar) | zur Verankerung und/oder<br>Unterstützung tragender<br>Betonelemente oder schwerer<br>Bauteile wie Bekleidung und<br>Unterdecken | _                    | 1      |

# Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 23. März 2015 vom Deutschen Institut für Bautechnik


Uwe Bender Abteilungsleiter Beglaubigt

**Z5717.15** 8.06.01-286/14











| Teil | Bezeichnung                                                            |                                                                                                                                                                                                                                                     | Material                                                                                                                                                                            |                                                                                                                                                                                                           |  |  |
|------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1    | Mörtelkartusche                                                        | l l                                                                                                                                                                                                                                                 | Vlörtel, Härter, Füllstoff                                                                                                                                                          |                                                                                                                                                                                                           |  |  |
|      |                                                                        | Stahl, verzinkt                                                                                                                                                                                                                                     | Nichtrostender Stahl<br>A4                                                                                                                                                          | Hochkorrosionsbe-<br>ständiger Stahl C                                                                                                                                                                    |  |  |
| 2    | Ankerstange                                                            | Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1: 2013 verzinkt ≥ 5µm, EN ISO 4042:1999 A2K oder feuerverzinkt EN ISO 10684:2004 f <sub>uk</sub> ≤ 1000 N/mm² A <sub>5</sub> > 12% Bruchdehnung                                                         | Festigkeitsklasse 50, 70 oder 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12\%$ Bruchdehnung | Festigkeitsklasse 50 oder 80 EN ISO 3506:2009 oder Festigkeitsklasse 70 mit $f_{yk}$ = 560 N/mm <sup>2</sup> 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000$ N/mm <sup>2</sup> $A_5 > 12\%$ Bruchdehnung |  |  |
| 3    | Unterlegscheibe<br>ISO 7089:2000                                       | verzinkt ≥ 5µm,<br>EN ISO 4042:1999 A2K<br>oder feuerverzinkt<br>EN ISO 10684:2004                                                                                                                                                                  | 1.4401; 1.4404;<br>1.4578;1.4571;<br>1.4439; 1.4362<br>EN 10088-1:2014                                                                                                              | 1.4565;1.4529<br>EN 10088-1:2014                                                                                                                                                                          |  |  |
| 4    | Sechskantmutter                                                        | Festigkeitsklasse 5 oder 8;<br>EN ISO 898-2:2013<br>verzinkt ≥ 5µm,<br>ISO 4042:1999 A2K<br>oder feuerverzinkt<br>EN ISO 10684:2004                                                                                                                 | Festigkeitsklasse 50,<br>70 oder 80<br>EN ISO 3506:2009<br>1.4401; 1.4404;<br>1.4578; 1.4571;<br>1.4571; 1.4439;<br>1.4362<br>EN 10088-1:2014                                       | Festigkeitsklasse 50, 7<br>oder 80<br>EN ISO 3506:2009<br>1.4565; 1.4529<br>EN 10088-1:2014                                                                                                               |  |  |
| 5    | fischer<br>Innengewindeanker<br>RG MI                                  | Festigkeitsklasse 5.8 oder<br>8.8;<br>ISO 898-1:2013<br>verzinkt ≥ 5µm,<br>ISO 4042:1999 A2K                                                                                                                                                        | Festigkeitsklasse 70<br>EN ISO 3506:2009<br>1.4401; 1.4404;<br>1.4578; 1.4571;<br>1.4439; 1.4362<br>EN 10088-1:2014                                                                 | Festigkeitsklasse 70<br>EN ISO 3506-1:2009<br>1.4565; 1.4529<br>EN 10088-1:2014                                                                                                                           |  |  |
| 6    | Schraube oder<br>Ankerstange für fischer<br>Innengewindeanker<br>RG MI | Festigkeitsklasse 5.8 oder<br>8.8;<br>EN ISO 898-1:2013<br>verzinkt ≥ 5µm,<br>ISO 4042:1999 A2K                                                                                                                                                     | Festigkeitsklasse 70<br>EN ISO 3506:2009<br>1.4401; 1.4404;<br>1.4578; 1.4571;<br>1.4439; 1.4362<br>EN 10088-1:2014                                                                 | Festigkeitsklasse 70<br>EN ISO 3506-1:2009<br>1.4565; 1.4529<br>EN 10088-1:2014                                                                                                                           |  |  |
| 7    | Betonstahl<br>EN 1992-1-1:2004 und<br>AC:2010, Anhang C                | Stäbe und Betonstahl vom $f_{yk}$ und k gemäß NDP oder l $f_{uk} = f_{uk} = k \cdot f_{yk}$ (k siehe Anha                                                                                                                                           | NCL der EN 1992-1-1/N<br>ng B 4)                                                                                                                                                    | A:2013                                                                                                                                                                                                    |  |  |
| 8    | fischer Bewehrungsanker<br>FRA                                         | Betonstahlteil: Stäbe und Betonstahl Gewindeteil: vom Ring Klasse B oder C mit $f_{yk}$ und Festigkeitsklasse 70 k gemäß NDP oder NCL der EN 1992- ISO 3506:2009 1-1/NA:2013 $f_{uk}$ = $f_{lk}$ = k· $f_{yk}$ (k siehe Anhang B 4) EN 10088-1:2014 |                                                                                                                                                                                     |                                                                                                                                                                                                           |  |  |

| fischer Superbond                  |            |
|------------------------------------|------------|
| Produktbeschreibung<br>Materialien | Anhang A 3 |



#### Angaben zum Verwendungszweck (Teil 1) Tabelle B1: Übersicht Nutzungskategorien und Leistungskategorien Beanspruchung der Mörtelsystem FIS SB mit ... Verankerung fischer fischer Ankerstange Betonstahl Bewehrungsanker Innengewindeanker RG MI FRA michanismienamistichanismis maradatichanis macadatichanismianianismi Hammerbohren alle Größen Diamantbohren nicht zulässig Statische ungerissenen Tabellen: und quasi-Tabellen: Tabellen: Tabellen: Beton alle C1; C3; alle alle alle statische C3: C6: C13: C7; C9; C8: C10: Größen Größen Größen Größen C5; C11; gerissenen Belastung. C14 C15; C16 C17; C18 C12 Beton im Ø8 M8 Tabelle Tabelle C1 Seismische C19 C20 M30 Ø 32 Leistungskategorie M12, (nur Hammer-Tabelle M16. C2 bohren) M20. C21 M24 trockener oder alle Größen nasser Beton Nutzungskategorie wassergefülltes nicht zulässig Bohrloch Beanspruchung der Patronensystem RSB mit ... Verankerung Ankerstange Innengewindeanker Betonstahl Stabanker FRA nur RGM RG MI **→**||1 Hammerbohren alle Größen Zulässig ≥ Ø 18 mm nicht zulässig nicht zulässig Diamantbohren RGM M16 bis M30 Zulässig ≥ Ø 18 mm nicht zulässig nicht zulässig Statische ungerissenen Tabellen: Tabellen: und quasi-M10 Beton alle C1;C2; statische C3; C4; C6; Größen C3; C5; gerissenen Belastung, M20 C13; C14 C11; C12 Beton im **M8** Seismische Tabelle C1 Leisungs-C19 M30 kategorie (nur Hammerbohren) C2 trockener oder RGM alle Größen alle Größen nasser Beton Nutzungskategorie wassergefülltes RGM alle Größen alle Größen Bohrloch fischer Superbond Anhang B 1 Verwendungszweck Bedingungen (Teil 1)



## Angaben zum Verwendungszweck (Teil 2)

| Einbau Tempe           | eratur               | +5°C bis +40°C   |                                                                              |  |  |
|------------------------|----------------------|------------------|------------------------------------------------------------------------------|--|--|
|                        | Temperaturbereich I  | -40°C bis +40°C  | (Maximale Langzeittemperatur +24°C und<br>Maximale Kurzzeittemperatur +40°C) |  |  |
| Gebrauchs-             | Temperaturbereich II | -40°C bis +80°C  | (Maximale Langzeittemperatur +50°C und Maximale Kurzzeittemperatur +80°C)    |  |  |
| temperatur-<br>bereich |                      | -40°C bis +120°C | (Maximale Langzeittemperatur +72°C und Maximale Kurzzeittemperatur +120°C)   |  |  |
|                        | Temperaturbereich IV | -40°C bis +150°C | (Maximale Langzeittemperatur +90°C und Maximale Kurzzeittemperatur +150°C)   |  |  |

### Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton nach EN 206:2013
- Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206:2013

### Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder Hochkorrosionsbeständiger Stahl)
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder Hochkorrosionsbeständiger Stahl)
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (Hochkorrosionsbeständiger Stahl)

Anmerkung: Zu besonders aggressiven Bedingungen gehören z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmhallen oder Atmosphäre mit extremer chemischer Verschmutzung

(z.B. in Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden)

### Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden pr
  üfbare Berechnungen und
  Konstruktionszeichnungen angefertigt. Auf den Konstruktionszeichnungen ist die Lage der D
  übel
  angegeben. (z. B. Lage des D
  übels zur Bewehrung oder zu den Auflagern).
- Die Bemessung der Verankerungen unter statischer oder quasi-statischer Belastung wird durchgeführt in Übereinstimmung mit: TR 029
- Verankerungen unter seismischer Einwirkung werden bemessen in Übereinstimmung mit: TR 045

#### Einbau:

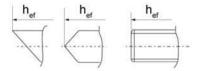
- · Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Im Fall von Fehlbohrungen sind diese zu vermörteln.
- Markieren und einhalten der effektiven Verankerungstiefe

# Handelsübliche Gewindestangen, Unterlegscheiben und Sechskantmuttern dürfen ebenfalls verwendet werden, wenn die folgenden Anforderungen erfüllt werden:

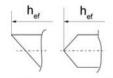
- Materialien, Abmessungen und mechanische Eigenschaften gemäß Anhang A 3, Tabelle A1
- Prüfzeugnis 3.1 gemäß EN 10204:2004, die Dokumente sollten aufgehoben werden
- · Markierung der Verankerungstiefe

| fischer Superbond                        |            |
|------------------------------------------|------------|
| Verwendungszweck<br>Bedingungen (Teil 2) | Anhang B 2 |

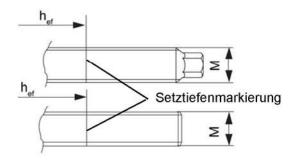



Tabelle B2: Montagekennwerte für Ankerstangen

| Größe               |                                                                       |                             |                       |      | M8              | M10     | M12  | M16              | M20               | M24                  | M27 | M30 |
|---------------------|-----------------------------------------------------------------------|-----------------------------|-----------------------|------|-----------------|---------|------|------------------|-------------------|----------------------|-----|-----|
| Schlüss             | elweite                                                               |                             | sw                    | [mm] | 13              | 17      | 19   | 24               | 30                | 36                   | 41  | 46  |
|                     | Nomineller<br>Bohrdurchmess                                           |                             | do                    | [mm] | 10              | 12      | 14   | 18               | 24                | 28                   | 30  | 35  |
|                     | Tiefe des Bohrl                                                       | ochs                        | h₀                    | [mm] |                 |         |      | h <sub>0</sub> ։ | = h <sub>ef</sub> |                      |     |     |
| Injek-              | Effektive Veran                                                       | kerungs-                    | $h_{\text{ef,min}}$   | [mm] | 60              | 60      | 70   | 80               | 90                | 96                   | 108 | 120 |
| tions-              | tiefe                                                                 |                             | $h_{\text{ef,max}}$   | [mm] | 160             | 200     | 240  | 320              | 400               | 480                  | 540 | 600 |
| mörtel<br>FIS<br>SB | Durch-<br>messer<br>des                                               | Vorsteck-<br>montage        | ≤ d <sub>f</sub>      | [mm] | 9               | 12      | 14   | 18               | 22                | 26                   | 30  | 33  |
|                     | Durchgangs-<br>lochs im<br>Anbauteil <sup>1)</sup>                    | Durchsteck-<br>montage      | ≤ d <sub>f</sub>      | [mm] | 11              | 14      | 16   | 20               | 26                | 30                   | 33  | 40  |
|                     | Nomineller<br>Bohrdurchmess                                           | ser                         | d₀                    | [mm] | 10              | 12      | 14   | 18               | 25                | 28                   |     | 35  |
|                     | Tiefe des Bohrl                                                       | ochs                        | h₀                    | [mm] |                 |         |      | h <sub>o</sub> : | = h <sub>ef</sub> |                      |     |     |
| Mörtel              | Effektive                                                             | _                           | $h_{ m ef,1}$         | [mm] |                 | 75      | 75   | 95               |                   |                      |     |     |
| Patr-               | Verankerungs-                                                         | _                           | $h_{ef,2}$            | [mm] | 80              | 90      | 110  | 125              | 170               | 210                  |     | 280 |
| one                 | tiefe                                                                 |                             | $h_{\rm ef,3}$        | [mm] |                 | 150     | 150  | 190              | 210               |                      |     |     |
| RSB                 | Durchmesser<br>des Durch-<br>gangslochs im<br>Anbauteil <sup>1)</sup> | Nur<br>Vorsteck-<br>montage | ≤ d <sub>f</sub>      | [mm] | 9               | 12      | 14   | 18               | 22                | 26                   |     | 33  |
| Minimal<br>Randab   | er Achs- und<br>stand                                                 | s <sub>min</sub> = c        | C <sub>min</sub>      | [mm] | 40              | 45      | 55   | 65               | 85                | 105                  | 120 | 140 |
| Mindest<br>Betonba  | dicke des<br>auteils                                                  |                             | h <sub>min</sub>      | [mm] | h <sub>ef</sub> | + 30 (≥ | 100) |                  | ŀ                 | n <sub>ef</sub> + 2d | 0   |     |
| Maxima              | les Drehmoment                                                        | m                           | nax T <sub>inst</sub> | [Nm] | 10              | 20      | 40   | 60               | 120               | 150                  | 200 | 300 |


<sup>1)</sup> Für größere Durchgangslöcher im Anbauteil siehe TR 029, 4.2.2.1

### fischer Ankerstange:


alternative Spitzengeometrie Ankerstange FIS A



alternative Spitzengeometrie Ankerstange RGM



alternative Kopfgeometrie fischer Ankerstange FIS A und RGM



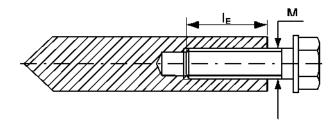
## Prägung (an beliebiger Stelle):

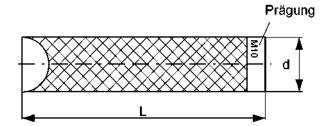
Festigkeitsklasse 8.8 oder hochkorrosionsbeständiger Stahl, Festigkeitsklasse 80: • Nichtrostender Stahl A4, Festigkeitsklasse 50 und hochkorrosionsbeständiger Stahl, Festigkeitsklasse 50: • •

fischer Superbond

Verwendungszweck
Montagekennwerte Ankerstangen

Anhang B 3





Tabelle B3: Montagekennwerte fischer Innengewindeanker RG MI

| Größe                                                                 |                       |      | M8  | M10 | M12            | M16 | M20 |
|-----------------------------------------------------------------------|-----------------------|------|-----|-----|----------------|-----|-----|
| Ankerdurchmesser                                                      | dн                    | [mm] | 12  | 16  | 18             | 22  | 28  |
| Nomineller<br>Bohrdurchmesser                                         | d <sub>0</sub>        | [mm] | 14  | 18  | 20             | 24  | 32  |
| Bohrlochtiefe                                                         | ho                    | [mm] |     |     | $h_0 = h_{ef}$ |     |     |
| Effektive<br>Verankerungstiefe<br>(h <sub>ef</sub> = L <sub>H</sub> ) | h <sub>ef</sub>       | [mm] | 90  | 90  | 125            | 160 | 200 |
| Maximales<br>Drehmoment                                               | max T <sub>inst</sub> | [Nm] | 10  | 20  | 40             | 80  | 120 |
| Minimaler<br>Achsabstand                                              | S <sub>min</sub>      | [mm] | 55  | 65  | 75             | 95  | 125 |
| Minimaler<br>Randabstand                                              | C <sub>min</sub>      | [mm] | 55  | 65  | 75             | 95  | 125 |
| Durchmesser des<br>Durchgangslochs im<br>Anbauteil <sup>1)</sup>      | d <sub>f</sub>        | [mm] | 9   | 12  | 14             | 18  | 22  |
| Mindestdicke des<br>Betonbauteils                                     | h <sub>min</sub>      | [mm] | 120 | 125 | 165            | 205 | 260 |
| Maximale<br>Einschraubtiefe                                           | I <sub>E,max</sub>    | [mm] | 18  | 23  | 26             | 35  | 45  |
| Minimale<br>Einschraubtiefe                                           | 1 <sub>E,min</sub>    | [mm] | 8   | 10  | 12             | 16  | 20  |

<sup>1)</sup> Für größere Durchgangslöcher im Anbauteil siehe TR 029, 4.2.2.1

# fischer Innengewindeanker RG MI





Prägung: Ankergröße

z. B.: M10

Nichtrostender Stahl zusätzlich A4

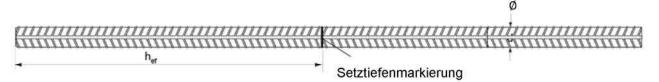
z. B.: M10 A4

Hochkorrosionsbeständiger Stahl zusätzlich C

z. B.: M10 C

Befestigungsschraube oder Ankerstangen (einschliesslich Mutter und Unterlegscheibe) müssen den zugehörigen Materialien und Festigkeitsklassen gemäß Tabelle A1 entsprechen.

| fischer Superbond                                                    |            |
|----------------------------------------------------------------------|------------|
| Verwendungszweck<br>Montagekennwerte fischer Innengewindeanker RG MI | Anhang B 4 |




# Tabelle B4: Montagekennwerte Betonstahl

| Nenndurchmesser des<br>Stabes     |                     | Ø    | <b>8</b> ¹〉     | 10 <sup>1)</sup> | 12   | 1) | 14  | 16  | 20                   | 25  | 28  | 32  |
|-----------------------------------|---------------------|------|-----------------|------------------|------|----|-----|-----|----------------------|-----|-----|-----|
| Nomineller<br>Bohrdurchmesser     | $d_0$               | [mm] | (10)12          | (12)14           | (14) | 16 | 18  | 20  | 25                   | 30  | 35  | 40  |
| Bohrlochtiefe                     | ho                  | [mm] | $h_0 = h_{ef}$  |                  |      |    |     |     |                      |     |     |     |
| Effektive                         | h <sub>ef,min</sub> | [mm] | 60              | 60               | 70   | )  | 75  | 80  | 90                   | 100 | 112 | 128 |
| Verankerungs-<br>tiefe            | h <sub>ef,max</sub> | [mm] | 160             | 200              | 240  | C  | 280 | 320 | 400                  | 500 | 560 | 640 |
| Minimaler Achsabstand             | Smin                | [mm] | 40              | <b>4</b> 5       | 55   | •  | 60  | 65  | 85                   | 110 | 130 | 160 |
| Minimaler Randabstand             | C <sub>min</sub>    | [mm] | 40              | 45               | 55   |    | 60  | 65  | 85                   | 110 | 130 | 160 |
| Mindestdicke des<br>Betonbauteils | h <sub>min</sub>    | [mm] | h <sub>ef</sub> | + 30 ≥ 10        | 0    |    |     | ŀ   | n <sub>ef</sub> + 20 | do  |     |     |

<sup>1)</sup> Beide Bohrernenndurchmesser sind möglich.

### Betonstahl



# Eigenschaften von Betonstahl: Auszug aus EN 1992-1-1 Anhang C, Tabelle C.1 und C.2N

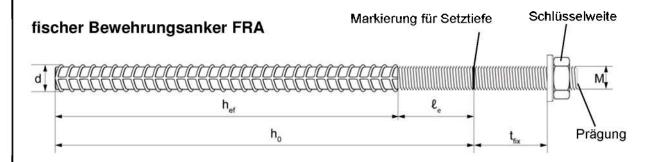
| Produktart                                                     | Unverzinkte Stäbe und Betonstahl vom<br>Ring |                     |                      |       |  |  |
|----------------------------------------------------------------|----------------------------------------------|---------------------|----------------------|-------|--|--|
| Klasse                                                         | Klasse                                       |                     |                      |       |  |  |
| Charakteristische Streckgrenze                                 | f <sub>vk</sub> oder f <sub>0,2</sub>        | k [MPa]             | 400 bis              | 600   |  |  |
| Mindestwert von $k = (f_1 / f_y)_k$                            | ≥ 1,08                                       | ≥ 1,15<br>< 1,35    |                      |       |  |  |
| Charakteristische Dehnung bei Hö                               | chstlast                                     | ε <sub>uk</sub> [%] | ≥ 5,0                | ≥ 7,5 |  |  |
| Biegbarkeit                                                    |                                              |                     | Biege-/Rückbiegetest |       |  |  |
| Maximale Abweichung von der Nennmasse (Einzelstab)             | Nenndurch-<br>messer des                     | ≤ 8                 | ± 6,0                | )     |  |  |
| [%]                                                            | Stabes [mm]                                  | > 8                 | ± 4,5                |       |  |  |
| Verbund: Mindestwert der bezogenen Nenndurchmesser des         |                                              | 8 bis<br>12         | 0,040                |       |  |  |
| Rippenfläche, f <sub>R,min</sub><br>(Ermittlung gem. EN 15630) | Stabes [mm]                                  | > 12                | 0,056                |       |  |  |

## Rippenhöhe h:

Die Rippenhöhe muss im folgenden Bereich liegen:

Ø = Nenndurchmesser des Stabes

 $0.05 * \emptyset \leq h \leq 0.07 * \emptyset$ 


| fischer Superbond                               |            |
|-------------------------------------------------|------------|
| Verwendungszweck<br>Montagekennwerte Betonstahl | Anhang B 5 |



| Gewindedurchmesser                                          |                   |                     |      | M12                          | 1) | M16               | M20                  | M24 |
|-------------------------------------------------------------|-------------------|---------------------|------|------------------------------|----|-------------------|----------------------|-----|
| Nenndurchmesser des<br>Stabes                               |                   | Ø                   | [mm] | 12                           |    | 16                | 20                   | 25  |
| Schlüsselweite                                              |                   | SW                  | [mm] | 19                           |    | 24                | 30                   | 36  |
| Nomineller<br>Bohrdurchmesser                               |                   | d <sub>o</sub>      | [mm] | (14)                         | 16 | 20                | 25                   | 30  |
| Tiefe des Bohrlochs<br>(h <sub>0</sub> = l <sub>ges</sub> ) |                   | ho                  | [mm] |                              |    | h <sub>ef</sub> + | l <sub>e</sub>       |     |
| Abstand Betonoberfläche zur Schweissstelle                  |                   | l <sub>e</sub>      | [mm] |                              |    | 100               |                      |     |
| Effektive                                                   |                   | h <sub>ef,min</sub> | [mm] | 70                           |    | 80                | 90                   | 96  |
| Verankerungstiefe                                           |                   | h <sub>ef,max</sub> | [mm] | 140                          | )  | 220               | 300                  | 380 |
| Maximales Drehmoment                                        |                   | x T <sub>inst</sub> | [Nm] | 40                           |    | 60                | 120                  | 150 |
| Minimaler Achsabstand                                       |                   | Smin                | [mm] | 55                           |    | 65                | 85                   | 105 |
| Minimaler Randabstand                                       |                   | C <sub>min</sub>    | [mm] | 55                           |    | 65                | 85                   | 105 |
| Durchmesser des                                             | Vorsteckmontage   | ≤ d <sub>f</sub>    | [mm] | 14                           |    | 18                | 22                   | 26  |
| Durchgangslochs im<br>Anbauteil <sup>2)</sup>               | Durchsteckmontage | ≤ d <sub>f</sub>    | [mm] | 18                           |    | 22                | 26                   | 32  |
| Mindestdicke des<br>Betonbauteils                           |                   | h <sub>min</sub>    | [mm] | h <sub>ef</sub> +30<br>≥ 100 |    | h <sub>e</sub>    | ., + 2d <sub>0</sub> | 1   |

<sup>&</sup>lt;sup>1)</sup> Beide Bohrernenndurchmesser sind möglich

<sup>&</sup>lt;sup>2)</sup> Für größere Durchgangslöcher im Anbauteil siehe TR 029, 4.2.2.1



Prägung: auf Kopf z. B.: FRA (für nichtrostenden Stahl); FRA C (für hochkorrosionsbeständigen Stahl)

| fischer Superbond                                                |            |
|------------------------------------------------------------------|------------|
| Verwendungszweck<br>Montagekennwerte fischer Bewehrungsanker FRA | Anhang B 6 |



Tabelle B6: Abmessungen der Mörtelpatronen RSB

| Patrone     |       | [-]  | RSB<br>8 | RSB<br>10<br>mini | RSB<br>10 | RSB<br>12<br>mini | RSB<br>12 | RSB<br>16<br>mini | RSB<br>16 | RSB<br>16 E | RSB<br>20 | RSB<br>20 E<br>/24 | RSB<br>30 |
|-------------|-------|------|----------|-------------------|-----------|-------------------|-----------|-------------------|-----------|-------------|-----------|--------------------|-----------|
| Durchmesser | $D_p$ | [mm] | 9,0      | 10                | ),5       | 12                | 2,5       |                   | 16,5      |             | 23        | 3,0                | 27,5      |
| Länge       | Lρ    | [mm] | 85       | 72                | 90        | 72                | 97        | 72                | 95        | 123         | 160       | 190                | 260       |

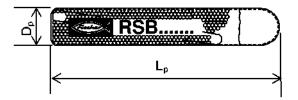



Tabelle B7: Zuordnung Mörtelpatronen RSB zu fischer Ankerstangen RGM

| Größe                           |                   |      | M8 | M10      | M12      | M16      | M20        | M24        | M30 |
|---------------------------------|-------------------|------|----|----------|----------|----------|------------|------------|-----|
| Nomineller<br>Bohrdurchmesser   | do                | [mm] | 10 | 12       | 14       | 18       | 25         | 28         | 35  |
| minimale Setztiefe              | $h_{\text{ef,1}}$ | [mm] |    | 75       | 75       | 95       |            |            |     |
| zugehörige<br>Mörtelpatrone RSB |                   | [-]  |    | 10mini   | 12mini   | 16mini   |            |            |     |
| mittlere Setztiefe              | $h_{\text{ef,2}}$ | [mm] | 80 | 90       | 110      | 125      | 170        | 210        | 280 |
| zugehörige<br>Mörtelpatrone RSB |                   | [-]  | 8  | 10       | 12       | 16       | 20         | 20<br>E/24 | 30  |
| maximale Setztiefe              | h <sub>ef,3</sub> | [mm] |    | 150      | 150      | 190      | 210        |            |     |
| zugehörige<br>Mörtelpatrone RSB | -                 | [-]  |    | 2x10mini | 2x12mini | 2x16mini | 20<br>E/24 |            |     |

Tabelle B8: Zuordnung Mörtelpatronen RSB zu fischer Innengewindeankern RG MI

| Größe                           |                 |      | M8 | M10 | M12 | M16  | M20     |
|---------------------------------|-----------------|------|----|-----|-----|------|---------|
| Nomineller<br>Bohrdurchmesser   | $d_0$           | [mm] | 14 | 18  | 20  | 24   | 32      |
| Setztiefe                       | h <sub>ef</sub> | [mm] | 90 | 90  | 125 | 160  | 200     |
| Zugehörige<br>Mörtelpatrone RSB |                 | [-]  | 10 | 12  | 16  | 16 E | 20 E/24 |

fischer Superbond

Verwendungszweck
Mörtelpatrone RSB
Abmessungen und Zuordnungen

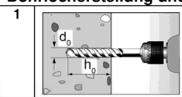
Anhang B 7



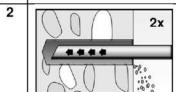
Tabelle B9: Kennwerte der Stahlbürste FIS BS Ø ..

| Drehbohrer<br>Durchmesser                      | [mm] | 10 | 12 | 14 | 16 | 18 | 20 | 24 | 25 | 28 | 30 | 32 | 35 | 40         |
|------------------------------------------------|------|----|----|----|----|----|----|----|----|----|----|----|----|------------|
| Stahlbürsten-<br>durchmesser<br>d <sub>b</sub> | [mm] | 11 | 14 | 16 | 2  | :0 | 25 | 26 | 27 | 30 |    | 40 |    | <b>4</b> 2 |



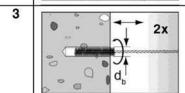

**Tabelle B10:** Maximal zulässige Verarbeitungszeit und minimale Wartezeit (minimale Kartuschentemperatur +5°C; minimale Patronentemperatur -15°C)

| Temp<br>Veranke |      |               |        | arbeitungszeit<br>linuten] | Minimale Aushärtezeit<br>t <sub>cure</sub> [Minuten] |                      |             |  |  |  |
|-----------------|------|---------------|--------|----------------------------|------------------------------------------------------|----------------------|-------------|--|--|--|
|                 | (°C) | · • · · · · · | FIS SB | FIS SB High<br>Speed       | FIS SB                                               | FIS SB High<br>Speed | RSB         |  |  |  |
| -30             | bis  | -20           |        | _                          |                                                      |                      | 120 Stunden |  |  |  |
| >-20            | bis  | -15           |        | 60                         |                                                      | 24 Stunden           | 48 Stunden  |  |  |  |
| >-15            | bis  | -10           | 60     | 30                         | 36 Stunden                                           | 8 Stunden            | 30 Stunden  |  |  |  |
| >-10            | bis  | -5            | 30     | 15                         | 24 Stunden                                           | 3 Stunden            | 16 Stunden  |  |  |  |
| >-5             | bis  | ±0            | 20     | 10                         | 8 Stunden                                            | 2 Stunden            | 10 Stunden  |  |  |  |
| >±0             | bis  | +5            | 13     | 5                          | 4 Stunden                                            | 1 Stunden            | 45          |  |  |  |
| >+5             | bis  | +10           | 9      | 3                          | 120                                                  | 45                   | 30          |  |  |  |
| >+10            | bis  | +20           | 5      | 2                          | 60                                                   | 30                   | 20          |  |  |  |
| >+20            | bis  | +30           | 4      | 1                          | 45                                                   | 15                   | 5           |  |  |  |
| >+30            | bis  | +40           | 2      |                            | 30                                                   |                      | 3           |  |  |  |

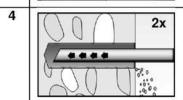

| fischer Superbond                                                            |            |
|------------------------------------------------------------------------------|------------|
| Verwendungszweck<br>Reinigungswerkzeuge<br>Verarbeitungs- und Aushärtezeiten | Anhang B 8 |



# Bohrlocherstellung und Bohrlochreinigung (hammerbohren) Mörtelsystem FIS SB



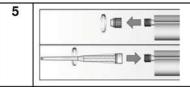

Bohrloch erstellen. Bohrlochdurchmesser d<sub>0</sub> und Bohrlochtiefe h<sub>0</sub> siehe **Tabellen B2**, **B3**, **B4**, **B5**.




Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p  $\geq$  6 bar). Die Verwendung eines Handausbläsers ist im ungerissenen Beton möglich, wenn gleichzeitig der Bohrdurchmesser kleiner als 18 mm und die Verankerungstiefe  $h_{\rm ef}$  kleiner 10d ist.





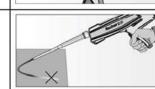

Bohrloch zweimal ausbürsten. Bei tiefen Bohrlöchern Verlängerung verwenden. Entsprechende Bürsten siehe **Tabelle B9** 



Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p ≥ 6 bar). Die Verwendung eines Handausbläsers ist im ungerissenen Beton möglich, wenn gleichzeitig der Bohrdurchmesser kleiner als 18 mm und die Verankerungstiefe h<sub>ef</sub> kleiner 10d ist.



# Kartuschenvorbereitung




Verschlusskappe abschrauben Statikmischer aufschrauben (die Mischspirale im Statikmischer muss deutlich sichtbar sein).





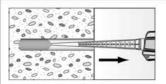
Kartusche in die Auspresspistole legen.



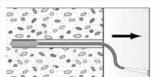


Einen etwa 10 cm langen Strang auspressen, bis der Mörtel gleichmäßig grau gefärbt ist. Nicht gleichmässig grauer Mörtel ist zu verwerfen.

fischer Superbond


7

Verwendungszweck Montageanleitung Teil 1 Anhang B 9



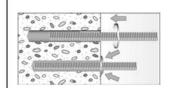

### Mörtelinjektion

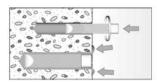
8



Ca. 2/3 des Bohrlochs mit Mörtel füllen . Immer am Bohrlochgrund beginnen und Blasen vermeiden.



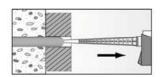

Bei Bohrlochtiefen ≥ 150 mm Verlängerungsschlauch verwenden.




Bei Überkopfmontage, tiefen Löchern  $h_0 > 250$ mm oder Bohrlochdurchmesser  $d_0 \ge 40$ mm Injektionshilfe verwenden.

# Montage Ankerstangen und fischer Innengewindeanker RG MI

9

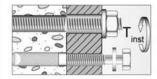





Nur saubere und ölfreie Verankerungselemente verwenden. Setztiefe des Ankers markieren. Die Ankerstange oder den fischer Innengewindeanker RG MI mit leichten Drehbewegungen in das Bohrloch schieben. Nach dem Setzen des Befestigungs-elementes muss Überschussmörtel aus dem Bohrlochmund austreten.



Bei Überkopfmontagen die Ankerstange mit Keilen fixieren.

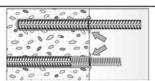



Für Durchsteckmontage den Ringspalt mit Mörtel verfüllen.

10



Aushärtezeit abwarten, t<sub>cure</sub> siehe **Tabelle B10**.

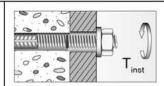



Montage des Anbauteils max T<sub>inst</sub> siehe **Tabellen B2, B3.** 

# Einbau Betonstähle und fischer FRA

9

Nur sauberen und ölfreien Betonstahl verwenden. Die Setztiefe auf dem Betonstahl markieren. Mit leichten Drehbewegungen den Betonstahl oder den fischer Bewehrungsanker FRA kräftig bis zur Setztiefenmarkierung in das gefüllte Bohrloch schieben.




Nach dem Erreichen der Setztiefenmarkierung muss Überschussmörtel aus dem Bohrlochmund austreten.

10

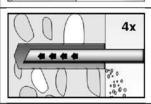


Aushärtezeit abwarten t<sub>cure</sub> siehe **Tabelle B10**.



Montage des Anbauteils max T<sub>inst</sub> siehe **Tabelle B5.** 

fischer Superbond


Verwendungszweck Montageanleitung Teil 2 Anhang B 10

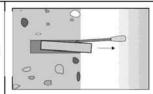


# Bohrlocherstellung und Bohrlochreinigung (hammerbohren) für Patrone RSB

Bohrloch erstellen. Bohrlochdurchmesser d<sub>0</sub> und Bohrlochtiefe h<sub>0</sub> siehe **Tabellen B2**, **B3**, **B4**, **B5**.

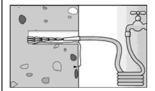
2




Bohrloch viermal unter Verwendung ölfreier Druckluft ausblasen (p  $\geq$  6 bar). Die Verwendung eines Handausbläsers ist im ungerissenen Beton möglich, wenn gleichzeitig der Bohrdurchmesser kleiner als 18 mm und die Verankerungstiefe  $h_{\rm ef}$  kleiner 10d ist.

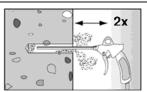


# Bohrlocherstellung und Bohrlochreinigung (diamantbohren) für Patrone RSB


d<sub>o</sub>

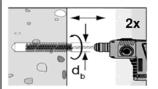
Bohrloch erstellen. Bohrlochdurchmesser d<sub>0</sub> und Bohrlochtiefe h<sub>0</sub> siehe Tabellen **B2**, **B3**.




Bohrkern brechen und herausziehen.

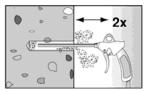
2




Bohrloch spülen, bis das Wasser klar wird.

3




Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

4

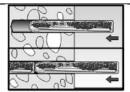


Bohrloch zweimal unter Verwendung einer Bohrmaschine ausbürsten.

5



Bohrloch zweimal unter Verwendung ölfreier Druckluft ausblasen (p > 6 bar)

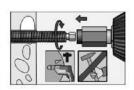

fischer Superbond

Verwendungszweck Montageanleitung Teil 3 Anhang B 11



# Einbau fischer Ankerstangen RGM oder fischer Innengewindeanker RG MI mit Patrone RSB

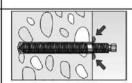
6




Mörtelpatrone RSB oder zwei RSB mini von Hand in das Bohrloch einstecken.



Je nach Verankerungselement passendes Setzwerkzeug verwenden.

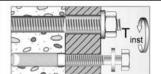

7





Nur saubere und fettfreie Anker verwenden. Den RGM oder den fischer Innengewindeanker RG MI mit dem Bohrhammer mit eingeschaltetem Schlag und passendem Adapter in die Patrone eintreiben. Anhalten, wenn der Anker den Grund des Bohrlochs erreicht und die korrekte Verankerungstiefe erreicht ist.

8




Nach dem Erreichen der korrekten Setztiefe muss Überschussmörtel aus dem Bohrlochmund austreten. Falls nicht, ist der Anker sofort zu ziehen und eine zweite Mörtelpatrone ist in das Bohrloch zu stecken. Setzvorgang wiederholen (7).

9



Aushärtezeit abwarten, t<sub>cure</sub> siehe **Tabelle B10**.



Montage des Anbauteils max T<sub>inst</sub> siehe **Tabellen B2, B3.** 

fischer Superbond

Verwendungszweck Montageanleitung Teil 4 Anhang B 12



**Tabelle C1:** Charakteristische Werte für die Zugtragfähigkeit von Ankerstangen mit Mörtel FIS SB oder Patrone RSB im hammergebohrten Bohrloch

| Größe                                    |                                           |                                 |        | M8                   | M10                         | M12  | M16 | M20                | M24 | M27 <sup>3)</sup> | M30 |
|------------------------------------------|-------------------------------------------|---------------------------------|--------|----------------------|-----------------------------|------|-----|--------------------|-----|-------------------|-----|
| Mantagociahorhoitefaktar                 | trockener und<br>nasser Beton             |                                 | [-]    |                      |                             |      |     | 1,0                |     |                   |     |
| Montagesicherheitsfaktor -               | wassergefülltes<br>Bohrloch <sup>2)</sup> | γ2                              | [-]    | 1                    | ,2                          | 1,0  |     |                    |     |                   |     |
| Kombiniertes Versagen d                  | lurch Herauszieh                          | en u                            | nd Be  | tonau                | ısbruc                      | h    |     |                    |     |                   |     |
| Rechnerischer Durchmess                  | er                                        | d                               | [mm]   | 8                    | 10                          | 12   | 16  | 20                 | 24  | 27                | 30  |
| Charakteristische Verbur                 | ndfestigkeit im un                        | geri                            | ssene  | n Bet                | on C20                      | 0/25 |     |                    |     |                   |     |
| Temperaturbereich I <sup>1)</sup>        | $	au_{Rk,ucr}$                            | [N/r                            | nm²]   | 12                   | 13                          | 13   | 13  | 13                 | 12  | 10                | 10  |
| Temperaturbereich II <sup>1)</sup>       | τ <sub>Rk,ucr</sub>                       | [N/i                            | nm²]   | 12                   | 12                          | 12   | 13  | 13                 | 12  | 10                | 10  |
| Temperaturbereich III <sup>1)</sup>      | τ <sub>Rk,ucr</sub>                       | [N/i                            | nm²]   | 10                   | 11                          | 11   | 11  | 11                 | 11  | 9                 | 9   |
| Temperaturbereich IV <sup>1)</sup>       | $	au_{ m Rk,uer}$                         | [N/t                            | nm²]   | 10                   | 10                          | 10   | 11  | 10                 | 10  | 8                 | 8   |
| Charakteristische Verbur                 | ndfestigkeit im ge                        | risse                           | enen l | Beton                | C20/2                       | 5    |     |                    |     |                   |     |
| Temperaturbereich I <sup>1)</sup>        | τ <sub>Rk,cr</sub>                        | [N/r                            | nm²]   | 6,5                  | 7,0                         | 7,5  | 7,5 | 7,5                | 7,5 | 7,5               | 7,5 |
| Temperaturbereich II <sup>1)</sup>       | τ <sub>Rk,cr</sub>                        | 1\N]                            | mm²]   | 6,0                  | 6,5                         | 7,5  | 7,5 | 7,5                | 7,5 | 7,0               | 7,0 |
| Temperaturbereich III <sup>1)</sup>      | $	au_{ m Rk,cr}$                          | [N/r                            | nm²]   | 5,5                  | 6,0                         | 6,5  | 6,5 | 6,5                | 6,5 | 6,0               | 6,0 |
| Temperaturbereich IV <sup>1)</sup>       | $	au_{Rk,cr}$                             | [N/t                            | nm²]   | 5,0                  | 5,5                         | 6,0  | 6,0 | 6,0                | 6,0 | 5,5               | 5,5 |
|                                          | C2                                        | 5/30                            | [-]    |                      |                             |      | 1   | ,02                |     |                   |     |
|                                          | C3                                        | 0/37                            | [-]    |                      |                             |      | 1   | ,04                |     |                   |     |
| Erhöhungs-<br>σοικάστου - Ψ <sub>G</sub> | C3                                        | 5/45                            | [-]    |                      |                             |      | 1   | ,07                |     |                   |     |
| faktoren τ <sub>Rk</sub>                 | C4                                        | 0/50                            | [-]    |                      |                             |      | 1   | ,08                |     |                   |     |
|                                          | C4                                        | 5/55                            | [-]    |                      |                             |      | 1   | ,09                |     |                   |     |
|                                          | C5                                        | 0/60                            | [-]    |                      |                             |      | 1   | ,10                |     |                   |     |
| Spalten                                  |                                           |                                 |        |                      |                             |      |     |                    |     |                   |     |
| Bandahatand                              | h/h <sub>ef</sub> ≥2                      | ,0                              | [mm]   |                      |                             |      | 1,  | 0 h <sub>ef</sub>  |     |                   |     |
| Randabstand<br>c <sub>α,sp</sub>         | 2,0>h/h <sub>er</sub> >1                  | 2,0>h/h <sub>ef</sub> >1,3 [mm] |        |                      | 4,6 h <sub>ef</sub> – 1,8 h |      |     |                    |     |                   |     |
| ∨cr,sp                                   | h/h <sub>ef</sub> ≤1                      | ,3                              | [mm]   | 2,26 h <sub>ef</sub> |                             |      |     |                    |     |                   |     |
| Achsabstand                              | Scr                                       | sp                              | [mm]   |                      |                             |      | 2   | C <sub>cr,sp</sub> |     |                   |     |

<sup>&</sup>lt;sup>1)</sup> Siehe Anhang B 2 <sup>2)</sup> Nur RSB

| fischer Superbond                                                                     |            |
|---------------------------------------------------------------------------------------|------------|
| Leistungen<br>Charakteristische Werte für statische oder quasi-statische Zugbelastung | Anhang C 1 |

<sup>3)</sup> Nur FIS SB



**Tabelle C2:** Charakteristische Werte für die Zugtragfähigkeit von Ankerstangen mit Patrone RSB im diamantgebohrten Bohrloch

| Größe                        |                                         |                |                             | М8                  | M10       | M12      | M16                      | M20 | M24 | M30 |  |  |
|------------------------------|-----------------------------------------|----------------|-----------------------------|---------------------|-----------|----------|--------------------------|-----|-----|-----|--|--|
| Montage-<br>sicherheits-     | trockener und nasser Beton              |                | [-]                         |                     |           |          | 1,0                      |     |     |     |  |  |
| faktor                       | /assergefülltes<br>Bohrloch             | γ <sub>2</sub> | [-]                         | 1                   | 1,2 1,0   |          |                          |     |     |     |  |  |
| Kombiniertes Ve              | rsagen durch                            | Hera           | ausziehen und Betonausbruch |                     |           |          |                          |     |     |     |  |  |
| Rechnerischer<br>Durchmesser | sser d [mm] 8 10 12 16 20 24            |                |                             |                     |           |          |                          |     | 24  | 30  |  |  |
| Charakteristisch             | e Verbundfest                           | igkei          | t im ur                     | ngerisser           | nen Betor | n C20/25 |                          |     |     |     |  |  |
| Temperaturbereio             | :h I <sup>1)</sup> τ <sub>Rk,ucr</sub>  | [N             | /mm²]                       | 13                  | 13        | 14       | 14                       | 14  | 13  | 11  |  |  |
| Temperaturbereio             | - i tit,uoi                             | [N             | /mm²]                       | 12                  | 13        | 13       | 14                       | 13  | 13  | 10  |  |  |
| Temperaturbereio             |                                         | [N             | /mm²]                       | 11                  | 12        | 12       | 12                       | 12  | 11  | 9,5 |  |  |
| Temperaturbereio             | th IV <sup>1)</sup> τ <sub>Rk,uer</sub> | [N             | /mm²]                       | 10                  | 11        | 11       | 11                       | 11  | 10  | 8,5 |  |  |
| Charakteristisch             | e Verbundfest                           | igkei          | t im ge                     | erissener           | n Beton C | 20/25    |                          |     |     |     |  |  |
| Temperaturbereio             | :h I <sup>1)</sup> τ <sub>Rker</sub>    | [N             | /mm²]                       |                     |           |          | 7,5                      | 7,5 | 7,5 | 7,5 |  |  |
| Temperaturbereio             | th II <sup>1)</sup> τ <sub>Rk,cr</sub>  | [N             | /mm²]                       |                     |           |          | 7,5                      | 7,5 | 7,5 | 7,0 |  |  |
| Temperaturbereio             | :h III <sup>1)</sup> τ <sub>Rk,or</sub> | [N             | /mm²]                       |                     |           |          | 6,5                      | 6,5 | 6,5 | 6,5 |  |  |
| Temperaturbereio             | th IV <sup>1)</sup> τ <sub>Rk,er</sub>  | [N             | /mm²]                       |                     |           |          | 6,0                      | 6,0 | 6,0 | 6,0 |  |  |
|                              |                                         | 25/3           | 0 [-]                       |                     |           |          | 1,02                     |     |     |     |  |  |
|                              |                                         | 230/3          | 7 [-]                       |                     |           |          | 1,04                     |     |     |     |  |  |
| Erhöhungs-                   | Ψ <sub>c</sub> —                        | 35/4           | 5 [-]                       |                     |           |          | 1,07                     |     |     |     |  |  |
| faktoren τ <sub>Rk</sub>     |                                         | 240/5          | <del></del>                 |                     |           |          | 1,08                     |     |     |     |  |  |
|                              |                                         | 245/5          |                             |                     |           |          | 1,09                     |     |     |     |  |  |
|                              | (                                       | 250/6          | 0 [-]                       |                     |           |          | 1,10                     |     |     |     |  |  |
| Spalten                      |                                         |                |                             |                     |           |          |                          |     |     |     |  |  |
| Randabstand                  | h/h <sub>ef</sub> ≥                     | 2,0            | [mm]                        | 1,0 h <sub>ef</sub> |           |          |                          |     |     |     |  |  |
| C <sub>cr,sp</sub>           | 2,0>h/h <sub>ef</sub> >                 |                | [mm]                        |                     |           | 4        | ,6 h <sub>ef</sub> – 1,8 | 3 h |     |     |  |  |
| -u,əp                        | h/h <sub>ef</sub> ≤                     | 1,3            | [mm]                        |                     |           |          | 2,26 h <sub>ef</sub>     |     |     |     |  |  |
| Achsabstand                  | S                                       | cr,sp          | [mm]                        |                     |           |          | 2 c <sub>cr,sp</sub>     |     |     |     |  |  |

<sup>&</sup>lt;sup>1)</sup> Siehe Anhang B 2

fischer Superbond

Leistungen

Charakteristische Werte für statische oder quasi-statische Zugbelastung

Anhang C 2



Tabelle C3: Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeanker RG MI mit Mörtel FIS SB oder Patrone RSB im hammergebohrten Bohrloch

| Größe                                                   |                                           |                        |                      | М8                          | M10 | M12                  | M16 | M20 |  |
|---------------------------------------------------------|-------------------------------------------|------------------------|----------------------|-----------------------------|-----|----------------------|-----|-----|--|
| Montage-                                                | trockener und<br>nasser Beton             | r Beton                |                      |                             | 1,0 |                      |     |     |  |
| sicherheitsfaktor                                       | wassergefülltes<br>Bohrloch <sup>2)</sup> | γ2                     | [-]                  | 1,2                         |     | 1.                   | ,0  |     |  |
| Stahlversagen                                           |                                           |                        |                      |                             |     |                      |     |     |  |
|                                                         | Festigkeits-                              | 5.8                    | [kN]                 | 19                          | 29  | 43                   | 79  | 123 |  |
| Charakteristischer Widerstand mit Schraube              | klasse                                    | 8.8                    | [kN]                 | 29                          | 47  | 68                   | 108 | 179 |  |
| N <sub>Rk,s</sub>                                       | Festigkeits                               | A4                     | [kN]                 | 26                          | 41  | 59                   | 110 | 172 |  |
| · -1 (R, 3                                              | klasse 70                                 | С                      | [kN]                 | 26                          | 41  | 59                   | 110 | 172 |  |
| Kombiniertes Versager                                   | durch Herausz                             | iehen und              | d Betonau            | isbruch                     | 1   |                      |     |     |  |
| Rechnerischer Durchmes                                  | ser                                       | dн                     | [mm]                 | 12                          | 16  | 18                   | 22  | 28  |  |
| Charakteristische Verb                                  | undfestigkeit im                          | ungeris                | senen Bet            | on C20                      | /25 |                      |     |     |  |
| Temperaturbereich I <sup>1)</sup>                       |                                           | $	au_{Rk,ucr}$         | [N/mm²]              | 12                          | 12  | 11                   | 11  | 9,5 |  |
| Temperaturbereich II <sup>1)</sup>                      |                                           | τ <sub>Rk,ucr</sub>    | [N/mm²]              | 12                          | 11  | 11                   | 10  | 9   |  |
| Temperaturbereich III <sup>1)</sup>                     |                                           | τ <sub>Rk,ucr</sub>    | [N/mm²]              | 11                          | 10  | 10                   | 9   | 8   |  |
| Temperaturbereich IV <sup>1)</sup>                      |                                           | $	au_{Rk,ucr}$         | [N/mm²]              | 10                          | 9,5 | 9                    | 8,5 | 7,5 |  |
| Charakteristische Verb                                  | undfestigkeit im                          | gerisser               | nen Beton            | C20/25                      | ;   |                      |     |     |  |
| Temperaturbereich I <sup>1)</sup>                       |                                           | $	au_{ m Rk,er}$       | [N/mm²]              | 5                           |     |                      |     |     |  |
| Temperaturbereich II <sup>1)</sup>                      |                                           | τ <sub>Rk,cr</sub>     | [N/mm²]              |                             |     | 5                    |     |     |  |
| Temperaturbereich III <sup>1)</sup>                     |                                           | $	au_{ m Rk,cr}$       | [N/mm²]              |                             |     | 4,5                  |     |     |  |
| Temperaturbereich IV <sup>1)</sup>                      |                                           | $	au_{Rk,cr}$          | [N/mm²]              |                             |     | 4                    |     |     |  |
|                                                         |                                           | C25/30                 | [-]                  |                             |     | 1,02                 |     |     |  |
|                                                         |                                           | C30/37                 | [-]                  |                             |     | 1,04                 |     |     |  |
| Erhöhungs- $\Psi_c$                                     |                                           | C35/45                 | [-]                  |                             |     | 1,07                 |     |     |  |
| faktoren τ <sub>Rk</sub>                                |                                           | C40/50                 | [-]                  |                             |     | 1,08                 |     |     |  |
|                                                         |                                           | C45/55                 | [-]                  |                             |     | 1,09                 |     |     |  |
|                                                         |                                           | C50/60                 | [-]                  |                             |     | 1,10                 |     |     |  |
| Spalten                                                 |                                           |                        |                      |                             |     |                      |     |     |  |
|                                                         |                                           | h/h <sub>ef</sub> ≥2,0 | [mm]                 |                             |     | 1,0 h <sub>ef</sub>  |     |     |  |
| Randabstand c <sub>cr,sp</sub> 2,0>h/h <sub>e</sub> >1, |                                           |                        | [mm]                 | 4,6 h <sub>ef</sub> – 1,8 h |     |                      |     |     |  |
|                                                         | h/h <sub>ef</sub> ≤1,3                    | [mm]                   | 2,26 h <sub>ef</sub> |                             |     |                      |     |     |  |
| Achsabstand                                             |                                           | Scr.sp                 | [mm]                 |                             |     | 2 c <sub>cr,sp</sub> |     |     |  |

<sup>&</sup>lt;sup>1)</sup> Siehe Anhang B 2 <sup>2)</sup> Nur RSB

| fischer Superbond                                                                  |            |
|------------------------------------------------------------------------------------|------------|
| Leistungen Charakteristische Werte für statische oder quasi-statische Zugbelastung | Anhang C 3 |

8.06.01-286/14 Z21408.15



**Tabelle C4:** Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeanker RG MI mit Patrone RSB im diamantgebohrten Bohrloch

| Größe                                               |                               |                         |           | М8                   | M10 | M12                     | M16 | M20 |
|-----------------------------------------------------|-------------------------------|-------------------------|-----------|----------------------|-----|-------------------------|-----|-----|
| Montage-                                            | trockener und<br>nasser Betor | ۱                       | [-]       |                      | 1,0 |                         |     |     |
| sicherheitsfaktor                                   | wassergefülltes<br>Bohrloch   | γ <sub>2</sub><br>1     | [-]       | 1,2                  |     | 1                       | ,0  |     |
| Stahlversagen                                       |                               |                         |           |                      |     |                         |     |     |
|                                                     | Festigkeits-                  | 5.8                     | [kN]      | 19                   | 29  | 43                      | 79  | 123 |
| Charakteristischer Widerstand mit Schraube          | klasse                        | 8.8                     | [kN]      | 29                   | 47  | 68                      | 108 | 179 |
| N <sub>Rk,s</sub>                                   | Festigkeits-                  | A4                      | [kN]      | 26                   | 41  | 59                      | 110 | 172 |
|                                                     | klasse 70                     | С                       | [kN]      | 26                   | 41  | 59                      | 110 | 172 |
| Kombiniertes Versagen                               | durch Heraus                  | ziehen un               | d Betonau | ısbruch              | ı   |                         |     |     |
| Rechnerischer Durchmes                              | ser                           | dн                      | [mm]      | 12                   | 16  | 18                      | 22  | 28  |
| Charakteristische Verbu                             | ındfestigkeit iı              | m ungeris:              | senen Bet | on C20               | /25 |                         |     |     |
| Temperaturbereich I <sup>1)</sup>                   |                               | τ <sub>Rk.ucr</sub>     | [N/mm²]   | 13                   | 12  | 12                      | 11  | 10  |
| Temperaturbereich II <sup>1)</sup>                  |                               | $	au_{ m Rk,uer}$       | [N/mm²]   | 13                   | 12  | 12                      | 11  | 9,5 |
| Temperaturbereich III <sup>1)</sup> $\tau_{Rk,ucr}$ |                               |                         | [N/mm²]   | 11                   | 11  | 10                      | 9,5 | 8,5 |
| Temperaturbereich IV <sup>1)</sup>                  | [N/mm²]                       | 10                      | 10        | 9,5                  | 9   | 8                       |     |     |
| Charakteristische Verbu                             | ındfestigkeit iı              | m gerisser              | nen Beton | C20/25               | 5   |                         |     |     |
| Temperaturbereich I <sup>1)</sup>                   |                               | τ <sub>Rk,cr</sub>      | [N/mm²]   |                      | 5   |                         |     |     |
| Temperaturbereich II <sup>1)</sup>                  |                               | $	au_{ m Rk,cr}$        | [N/mm²]   |                      |     |                         | 5   |     |
| Temperaturbereich III <sup>1)</sup>                 |                               | τ <sub>Rk,cr</sub>      | [N/mm²]   |                      |     | 4                       | ,5  |     |
| Temperaturbereich IV <sup>1)</sup>                  |                               | $	au_{ m Rk,er}$        | [N/mm²]   |                      |     | 4                       | 1   |     |
|                                                     |                               | C25/30                  | [-]       |                      |     | 1,02                    |     |     |
|                                                     | _                             | C30/37                  | [-]       |                      |     | 1,04                    |     |     |
| Erhöhungs-<br>Ψ <sub>c</sub>                        |                               | C35/45                  | [-]       |                      |     | 1,07                    |     |     |
| faktoren τ <sub>Rk</sub>                            |                               | C40/50                  | [-]       |                      |     | 1,08                    |     |     |
|                                                     | _                             | C45/55                  | [-]       |                      |     | 1,09                    |     |     |
|                                                     |                               | C50/60                  | [-]       | 1,10                 |     |                         |     |     |
| Spalten                                             |                               |                         |           |                      |     |                         |     |     |
|                                                     |                               | h/h <sub>ef</sub> ≥2,0  | [mm]      |                      |     | 1,0 h <sub>ef</sub>     |     |     |
| Randabstand c <sub>cr,sp</sub>                      | 2,0                           | >h/h <sub>ef</sub> >1,3 | [mm]      |                      | 4,0 | 6 h <sub>ef</sub> – 1,8 |     |     |
|                                                     |                               | h/h <sub>ef</sub> ≤1,3  | [mm]      | 2,26 h <sub>ef</sub> |     |                         |     |     |
| Achsabstand                                         |                               | S <sub>cr,sp</sub>      | [mm]      | 2 C <sub>cr,sp</sub> |     |                         |     |     |

<sup>&</sup>lt;sup>1)</sup> Siehe Anhang B 2

| fischer Superbond                                                                     |            |
|---------------------------------------------------------------------------------------|------------|
| Leistungen<br>Charakteristische Werte für statische oder quasi-statische Zugbelastung | Anhang C 4 |



# Tabelle C5: Charakteristische Werte für die Quertragfähigkeit von Ankerstangen

| Größe                                                                      | M8 | M10 | M12 | M16 | M20 | M24 | M27 | M30 |
|----------------------------------------------------------------------------|----|-----|-----|-----|-----|-----|-----|-----|
| Faktor k in Gleichung (5.7) des TR 029 für die Bemessung von Verbunddübeln |    |     |     | 2   | ,0  |     |     |     |

**Tabelle C6:** Charakteristische Werte für die Quertragfähigkeit von fischer Innengewindeankern RG MI

| Größe                                                                         |                            |     |      | M8   | M10  | M12  | M16  | M20  |
|-------------------------------------------------------------------------------|----------------------------|-----|------|------|------|------|------|------|
| Montagesicherheitsfaktor                                                      |                            | γ2  | [-]  |      |      | 1,0  |      |      |
| Stahlversagen ohne Hebe                                                       | elarm                      |     |      |      |      |      |      |      |
|                                                                               | Festigkeitsklasse -        | 5.8 | [kN] | 9,2  | 14,5 | 21,1 | 39,2 | 62,0 |
| Charakteristischer                                                            | restigneitsniasse -        | 8.8 | [kN] | 14,6 | 23,2 | 33,7 | 62,7 | 90,0 |
| Widerstand V <sub>Rk,s</sub>                                                  | Festigkeitsklasse _<br>70  | A4  | [kN] | 12,8 | 20,3 | 29,5 | 54,8 | 86,0 |
|                                                                               |                            | С   | [kN] | 12,8 | 20,3 | 29,5 | 54,8 | 86,0 |
| Stahlversagen mit Hebela                                                      | Stahlversagen mit Hebelarm |     |      |      |      |      |      |      |
|                                                                               | Coetiekeiteklesse          | 5.8 | [Nm] | 20   | 39   | 68   | 173  | 337  |
| Charakteristischer                                                            | Festigkeitsklasse -        | 8.8 | [Nm] | 30   | 60   | 105  | 266  | 519  |
| Widerstand M <sup>0</sup> <sub>Rk,s</sub>                                     | Festigkeitsklasse          | A4  | [Nm] | 26   | 52   | 92   | 232  | 454  |
|                                                                               | 70                         | С   | [Nm] | 26   | 52   | 92   | 232  | 454  |
| Betonausbruch auf der lastabgewandten Seite                                   |                            |     |      |      |      |      |      | _    |
| Faktor k in Gleichung (5.7) des TR 029 für die<br>Bemessung von Verbunddübeln |                            |     | [-]  |      |      | 2,0  |      |      |

| fischer Superbond                                                                      |            |
|----------------------------------------------------------------------------------------|------------|
| Leistungen Charakteristische Werte für statische oder quasi-statische Querzugbelastung | Anhang C 5 |



2 c<sub>cr,sp</sub>

| <b>Tabelle C7:</b> Cha<br>Inje                                   | arakteristische<br>ektionsmörtel F |                      |        | _       | -      | -   |                      | tonstäl | hle mit |     |     |
|------------------------------------------------------------------|------------------------------------|----------------------|--------|---------|--------|-----|----------------------|---------|---------|-----|-----|
| Größe                                                            | Ø                                  | [mm]                 | 8      | 10      | 12     | 14  | 16                   | 20      | 25      | 28  | 32  |
| Montagesicherheitsfa                                             | ktor γ <sub>2</sub>                | [-]                  |        |         |        | •   | 1,0                  |         | •       |     | •   |
| Kombiniertes Versa                                               | gen durch Herai                    | usziehen             | und Be | etonaus | bruch  |     |                      |         |         |     |     |
| Rechnerischer<br>Durchmesser                                     | d                                  | [mm]                 | 8      | 10      | 12     | 14  | 16                   | 20      | 25      | 28  | 32  |
| Charakteristische Verbundfestigkeit im ungerissenen Beton C20/25 |                                    |                      |        |         |        |     |                      |         |         |     |     |
| Temperaturbereich I <sup>1)</sup>                                | τ <sub>Rk,ucr</sub>                | [N/mm <sup>2</sup> ] | 8,0    | 8,5     | 9,0    | 9,5 | 9,5                  | 10      | 9,5     | 9,0 | 7,5 |
| Temperaturbereich II                                             | τ <sub>Rk,ucr</sub>                | [N/mm <sup>2</sup> ] | 8,0    | 8,5     | 9,0    | 9,0 | 9,5                  | 9,5     | 9,0     | 8,5 | 7,5 |
| Temperaturbereich III                                            | 1) $	au_{ m Rk,ucr}$               | [N/mm <sup>2</sup> ] | 7,0    | 7,5     | 8,0    | 8,0 | 8,5                  | 8,5     | 8,0     | 7,5 | 6,5 |
| Temperaturbereich IV                                             | τ <sub>Rk,ucr</sub>                | [N/mm <sup>2</sup> ] | 6,5    | 7,0     | 7,0    | 7,5 | 7,5                  | 8,0     | 7,5     | 7,0 | 6,0 |
| Charakteristische Vo                                             | erbundfestigkeit                   | im geris             | senen  | Beton ( | C20/25 |     |                      |         |         |     |     |
| Temperaturbereich I <sup>1)</sup>                                | τ <sub>Rk,er</sub>                 | [N/mm²]              | 4,5    | 6,0     | 6,0    | 6,0 | 7,0                  | 6,0     | 6,0     | 6,0 | 6,0 |
| Temperaturbereich II <sup>1</sup>                                | τ <sub>Rk,cr</sub>                 | [N/mm <sup>2</sup> ] | 4,5    | 5,5     | 5,5    | 5,5 | 6,5                  | 6,0     | 6,0     | 6,0 | 6,0 |
| Temperaturbereich III                                            | τ <sub>Rk,er</sub>                 | [N/mm <sup>2</sup> ] | 4,0    | 5,0     | 5,0    | 5,0 | 6,0                  | 5,5     | 5,5     | 5,5 | 5,5 |
| Temperaturbereich IV                                             | $	au_{Rk,cr}^{(1)}$                | [N/mm <sup>2</sup> ] | 3,5    | 4,5     | 4,5    | 4,5 | 5,5                  | 5,0     | 5,0     | 5,0 | 5,0 |
|                                                                  | C25/30                             | [-]                  |        |         |        |     | 1,02                 |         |         |     |     |
|                                                                  | C30/37                             | [-]                  |        |         |        |     | 1,04                 |         |         |     |     |
| Erhöhungs-<br>Ψ <sub>c</sub>                                     | C35/45                             | [-]                  |        |         |        |     | 1,07                 |         |         |     |     |
| faktoren τ <sub>Rk</sub>                                         | C40/50                             | [-]                  |        |         |        |     | 1,08                 |         |         |     |     |
|                                                                  | C45/55                             | [-]                  | 1,09   |         |        |     |                      |         |         |     |     |
|                                                                  | C50/60                             | [-]                  | 1,10   |         |        |     |                      |         |         |     |     |
| Spalten                                                          |                                    |                      |        |         |        |     |                      |         |         |     |     |
|                                                                  | h/h <sub>ef</sub> ≥2,0             | [mm]                 |        |         |        |     | 1,0 h <sub>ef</sub>  |         |         |     |     |
| Randabstand c <sub>cr,sp</sub>                                   | 2,0>h/h <sub>ef</sub> >1,3         | [mm]                 |        |         |        | 4,6 | h <sub>ef</sub> – 1, | 8 h     |         |     |     |
| h/h <sub>ef</sub> ≤1,3 [mm] 2,26 h <sub>ef</sub>                 |                                    |                      |        |         |        |     |                      |         |         |     |     |

| 1) | Siehe  | Anhang    | В 2     | 2 |
|----|--------|-----------|---------|---|
|    | olelle | Allilaliu | $D_{A}$ | _ |

 $S_{\text{cr,sp}}$ 

[mm]

Achsabstand

| fischer Superbond                                                                     |            |
|---------------------------------------------------------------------------------------|------------|
| Leistungen<br>Charakteristische Werte für statische oder quasi-statische Zugbelastung | Anhang C 6 |



**Tabelle C8:** Charakteristische Werte für die Zugtragfähigkeit von fischer Bewehrungsankern FRA mit Injektionsmörtel FIS SB im hammergebohrten Bohrloch

| Größe                                       |                            |                      | M12                  | M16      | M20             | M24 |  |  |
|---------------------------------------------|----------------------------|----------------------|----------------------|----------|-----------------|-----|--|--|
| Montagesicherheitsfaktor γ <sub>2</sub> [-] |                            |                      | 1,0                  |          |                 |     |  |  |
| Stahlversagen                               |                            |                      |                      |          |                 |     |  |  |
| Charakteristischer<br>Widerstand            | $N_{Rk,s}$                 | [kN]                 | 63                   | 111      | 173             | 270 |  |  |
| Teilsicherheitsfaktor                       | γ <sub>Ms,N</sub> 1)       | [-]                  |                      | 1        | ,4              |     |  |  |
| Kombiniertes Versagen de                    | urch Herausz               | iehen und            | l Betonausbru        | uch      |                 |     |  |  |
| Rechnerischer Durchmesse                    | r d                        | [mm]                 | 12                   | 16       | 20              | 25  |  |  |
| Charakteristische Verbun                    | dfestigkeit in             | n ungeriss           | enen Beton C         | 20/25    |                 |     |  |  |
| Temperaturbereich I 2)                      | $	au_{Rk,uer}$             | [N/mm²]              | 9,0                  | 9,5      | 10              | 9,5 |  |  |
| Temperaturbereich II 2)                     | $	au_{Rk,ucr}$             | [N/mm²]              | 9,0                  | 9,5      | 9,5             | 9,0 |  |  |
| Temperaturbereich III 2)                    | $	au_{Rk,uer}$             | [N/mm²]              | 8,0                  | 8,5      | 8,5             | 8,0 |  |  |
| Temperaturbereich IV 2)                     | $	au_{Rk,ucr}$             | [N/mm <sup>2</sup> ] | 7,0                  | 7,5      | 8,0             | 7,5 |  |  |
| Charakteristische Verbun                    | dfestigkeit in             | ı gerissen           | en Beton C20         | )/25     |                 |     |  |  |
| Temperaturbereich I 2)                      | $	au_{Rk,cr}$              | [N/mm <sup>2</sup> ] | 6,0                  | 7,0      | 6,0             | 6,0 |  |  |
| Temperaturbereich II <sup>2)</sup>          | $	au_{Rk,er}$              | [N/mm²]              | 5,5                  | 6,5      | 6,0             | 6,0 |  |  |
| Temperaturbereich III 2)                    | $	au_{Rk,er}$              | [N/mm <sup>2</sup> ] | 5,0                  | 6,0      | 5,5             | 5,5 |  |  |
| Temperaturbereich IV 2)                     | $\tau_{Rk,cr}$             | [N/mm <sup>2</sup> ] | 4,5                  | 5,5      | 5,0             | 5,0 |  |  |
|                                             | C25/30                     | [-]                  |                      | 1,       | 02              |     |  |  |
|                                             | C30/37                     | [-]                  |                      | <u>_</u> | 04              |     |  |  |
| Erhöhungs-<br>Ψ <sub>c</sub>                | C35/45                     | [-]                  |                      | 1,       | 07              |     |  |  |
| faktoren τ <sub>Rk</sub>                    | C40/50                     | [-]                  |                      | ·        | 19              |     |  |  |
|                                             | C45/55                     | [-]                  | 1,08                 |          |                 |     |  |  |
|                                             | C50/60                     | [-]                  | 1,10                 |          |                 |     |  |  |
| Spalten                                     |                            |                      |                      |          |                 |     |  |  |
| _                                           | h/h <sub>e</sub> ≥2,0      | [mm]                 |                      |          | h <sub>ef</sub> |     |  |  |
| Randabstand $c_{cr,sp}$ 2                   | 2,0>h/h <sub>ef</sub> >1,3 | [mm]                 |                      |          | – 1,8 h         |     |  |  |
|                                             | h/h <sub>ef</sub> ≤1,3     | [mm]                 | 2,26 h <sub>ef</sub> |          |                 |     |  |  |
| Achsabstand                                 | Scrisp                     | [mm]                 |                      | 2 0      | or,sp           |     |  |  |

<sup>&</sup>lt;sup>1)</sup> Sofern andere nationale Regelungen fehlen

| fischer Superbond                                                                     |            |
|---------------------------------------------------------------------------------------|------------|
| Leistungen<br>Charakteristische Werte für statische oder quasi-statische Zugbelastung | Anhang C 7 |

<sup>&</sup>lt;sup>2)</sup> Siehe Anhang B 2



# **Tabelle C9:** Charakteristische Werte für die Quertragfähigkeit von Betonstähle mit Injektionsmörtel FIS SB

| Größe                                                                            | Ø | [mm] | 8 | 10 | 12 | 14 | 16  | 20 | 25 | 28 | 32 |
|----------------------------------------------------------------------------------|---|------|---|----|----|----|-----|----|----|----|----|
| Betonausbruch auf der lastabgewandten Seite                                      |   |      |   |    |    |    |     |    |    |    |    |
| Faktor k in Gleichung (5.7) des<br>Technical Report TR 029,<br>Abschnitt 5.2.3.3 | k | [-]  |   |    |    |    | 2,0 |    |    |    |    |

**Tabelle C10:** Charakteristische Werte für Quertragfähigkeit von fischer Bewehrungsanker FRA mit Mörtel FIS SB

| Größe                                                                      |                                | M12  | M16 | M20 | M24 |     |
|----------------------------------------------------------------------------|--------------------------------|------|-----|-----|-----|-----|
| Stahlversagen ohne Hebelarm                                                |                                |      |     |     |     |     |
| Charakteristischer Widerstand                                              | $V_{Rk,s}$                     | [kN] | 30  | 55  | 86  | 124 |
| Teilsicherheitsfaktor                                                      | γ <sub>Ms,V</sub> 1)           | [-]  |     | 1,  | 56  |     |
| Stahlversagen mit Hebelarm                                                 |                                |      |     |     |     |     |
| Charakteristischer Widerstand                                              | M <sup>0</sup> <sub>Rk,s</sub> | [Nm] | 92  | 233 | 454 | 785 |
| Teilsicherheitsfaktor                                                      | γ <b>M</b> s,V 1)              | [-]  |     | 1,  | 56  | •   |
| Betonausbruch auf der lastabgewand                                         | Iten Seite                     | )    |     |     |     |     |
| Faktor k in Gleichung (5.7) des TR 029 für die Bemessung von Verbunddübeln |                                |      |     |     |     |     |

Leistungen
Charakteristische Werte für statische oder quasi-statische Querzugbelastung

Anhang C 8



Tabelle C11: Verschiebungen unter Zuglast für Ankerstangen<sup>1)</sup>

| Größe        |                 |                   | M8     | M10    | M12    | M16     | M20       | M24        | M27  | M30  |
|--------------|-----------------|-------------------|--------|--------|--------|---------|-----------|------------|------|------|
|              | Unger           | issener und geris | ssener | Beton; | Temper | aturber | eich I, I | I, III, IV |      |      |
| Verschiebung | δ <sub>N0</sub> | [mm/(N/mm²)]      | 0,07   | 0,08   | 0,09   | 0,10    | 0,11      | 0,12       | 0,13 | 0,13 |
| Verschiebung | δ <sub>N∞</sub> | [mm/(N/mm²)]      | 0,13   | 0,14   | 0,15   | 0,17    | 0,17      | 0,18       | 0,19 | 0,19 |

<sup>&</sup>lt;sup>1)</sup> Ermittlung der Verschiebung für Bemessungslast Verschiebung für Kurzzeitbelastung =  $\delta_{\text{No}} \cdot \tau_{\text{sd}} / 1,4$  Verschiebung für Langzeitbelastung =  $\delta_{\text{No}} \cdot \tau_{\text{sd}} / 1,4$  ( $\tau_{\text{sd}}$ : Bemessungswert der Verbundspannung)

Tabelle C12: Verschiebungen unter Querlast für Ankerstangen<sup>1)</sup>

| Größe        |                |                  | M8    | M10    | M12    | M16     | M20       | M24        | M27  | M30  |
|--------------|----------------|------------------|-------|--------|--------|---------|-----------|------------|------|------|
|              | Ungeris        | ssener und geris | sener | Beton; | Temper | aturber | eich I, I | I, III, IV |      |      |
| Verschiebung | δνο            | [mm/kN]          | 0,18  | 0,15   | 0,12   | 0,09    | 0,07      | 0,06       | 0,05 | 0,05 |
| Verschiebung | δ <sub>∨</sub> | [mm/kN]          | 0,27  | 0,22   | 0,18   | 0,14    | 0,11      | 0,09       | 0,08 | 0,07 |

<sup>&</sup>lt;sup>1)</sup> Ermittlung der Verschiebung für Bemessungslast Verschiebung für Kurzzeitbelastung =  $\delta_{V0} \cdot V_d / 1,4$  Verschiebung für Langzeitbelastung =  $\delta_{V\infty} \cdot V_d / 1,4$  ( $V_d$ : Bemessungswert der Querlast)

Tabelle C13: Verschiebungen unter Zuglast für fischer Innengewindeanker RG MI 1)

| Größe            |                 |                           | М8         | M10            | M12  | M16  | M20  |
|------------------|-----------------|---------------------------|------------|----------------|------|------|------|
| Ungerissener und | gerissene       | er Beton; Tempera         | turbereich | I, II, III, IV |      |      |      |
| Verschiebung     | $\delta_{N0}$   | [mm/(N/mm <sup>2</sup> )] | 0,09       | 0,10           | 0,10 | 0,11 | 0,19 |
| Verschiebung     | δ <sub>N⊸</sub> | [mm/(N/mm <sup>2</sup> )] | 0,13       | 0,15           | 0,15 | 0,17 | 0,19 |

<sup>&</sup>lt;sup>1)</sup> Ermittlung der Verschiebung für Bemessungslast Verschiebung für Kurzzeitbelastung =  $\delta_{\text{No}} \cdot \tau_{\text{sd}} / 1,4$  Verschiebung für Langzeitbelastung =  $\delta_{\text{No}} \cdot \tau_{\text{sd}} / 1,4$  ( $\tau_{\text{sd}}$ : Bemessungswert der Verbundspannung)

Tabelle C14: Verschiebungen unter Querlast für fischer Innengewindeanker RG MI 1)

| Größe            |               |                | M8          | M10           | M12  | M16  | M20  |
|------------------|---------------|----------------|-------------|---------------|------|------|------|
| Ungerissener und | gerissener Be | ton; Temperati | urbereich l | , II, III, IV |      |      |      |
| Verschiebung     | δνο           | [mm/kN]        | 0,12        | 0,09          | 0,08 | 0,07 | 0,05 |
| Verschiebung     | δv∞           | [mm/kN]        | 0,18        | 0,14          | 0,12 | 0,10 | 0,08 |

<sup>&</sup>lt;sup>1)</sup> Ermittlung der Verschiebung für Bemessungslast Verschiebung für Kurzzeitbelastung =  $\delta_{V0} \cdot V_d / 1,4$  Verschiebung für Langzeitbelastung =  $\delta_{V\infty} \cdot V_d / 1,4$  ( $V_d$ : Bemessungswert der Querlast)

| fischer Superbond                                                          |            |
|----------------------------------------------------------------------------|------------|
| Leistungen Verschiebungen Ankerstangen und fischer Innengewindeanker RG MI | Anhang C 9 |



| Tabelle C15: Verschiebungen unter Zuglast für Betonstahl 1) |                                                                     |                           |      |      |      |      |      |      |      |      |      |
|-------------------------------------------------------------|---------------------------------------------------------------------|---------------------------|------|------|------|------|------|------|------|------|------|
| Größe                                                       |                                                                     | Ø                         | 8    | 10   | 12   | 14   | 16   | 20   | 25   | 28   | 32   |
| Ungerissener u                                              | Ungerissener und gerissener Beton; Temperaturbereich I, II, III, IV |                           |      |      |      |      |      |      |      |      |      |
| Verschiebung                                                | $\delta_{\text{N0}}$                                                | [mm/(N/mm²)]              | 0,07 | 80,0 | 0,09 | 0,09 | 0,10 | 0,11 | 0,12 | 0,13 | 0,13 |
| Verschiebung                                                | δ <sub>N</sub>                                                      | [mm/(N/mm <sup>2</sup> )] | 0,12 | 0,13 | 0,13 | 0,15 | 0,16 | 0,16 | 0,18 | 0,20 | 0,20 |

<sup>&</sup>lt;sup>1)</sup> Ermittlung der Verschiebung für Bemessungslast Verschiebung für Kurzzeitbelastung =  $\delta_{\text{No}} \cdot \tau_{\text{sd}} / 1,4$  Verschiebung für Langzeitbelastung =  $\delta_{\text{No}} \cdot \tau_{\text{sd}} / 1,4$  ( $\tau_{\text{sd}}$ : Bemessungswert der Verbundspannung)

Tabelle C16: Verschiebungen unter Querlast für Betonstahl 1)

| Größe           |               | Ø               | 8       | 10       | 12         | 14      | 16   | 20   | 25   | 28   | 32   |
|-----------------|---------------|-----------------|---------|----------|------------|---------|------|------|------|------|------|
| Ungerissener ur | nd geris      | ssener Beton; 1 | Tempera | aturbere | ich I, II, | III, IV |      |      |      |      |      |
| Verschiebung    | $\delta_{V0}$ | [mm/kN]         | 0,18    | 0,15     | 0,12       | 0,10    | 0,09 | 0,07 | 0,06 | 0,05 | 0,05 |
| Verschiebung    | δν⊸           | [mm/kN]         | 0,27    | 0,22     | 0,18       | 0,16    | 0,14 | 0,11 | 0,09 | 80,0 | 0,06 |

<sup>&</sup>lt;sup>1)</sup> Ermittlung der Verschiebung für Bemessungslast Verschiebung für Kurzzeitbelastung =  $\delta_{V0} \cdot V_d / 1,4$  Verschiebung für Langzeitbelastung =  $\delta_{V\infty} \cdot V_d / 1,4$  ( $V_d$ : Bemessungswert der Querlast)

Tabelle C17: Verschiebungen unter Zuglast für fischer Bewehrungsanker FRA 1)

| Größe                 |                 |                           | M12              | M16  | M20  | M24  |
|-----------------------|-----------------|---------------------------|------------------|------|------|------|
| Ungerissener und geri | ssener Beton;   | Temperaturbereich         | h I, II, III, IV |      |      |      |
| Verschiebung          | δ <sub>N0</sub> | [mm/(N/mm²)]              | 0,09             | 0,10 | 0,11 | 0,12 |
| Verschiebung          | δ <sub>N∞</sub> | [mm/(N/mm <sup>2</sup> )] | 0,13             | 0,16 | 0,16 | 0,18 |

<sup>&</sup>lt;sup>1)</sup> Ermittlung der Verschiebung für Bemessungslast Verschiebung für Kurzzeitbelastung =  $\delta_{\text{N0}} \cdot \tau_{\text{sd}} / 1,4$  Verschiebung für Langzeitbelastung =  $\delta_{\text{N}\infty} \cdot \tau_{\text{sd}} / 1,4$  ( $\tau_{\text{sd}}$ : Bemessungswert der Verbundspannung)

Tabelle C18: Verschiebungen unter Querlast für fischer Bewehrungsanker FRA 1)

| Größe                 |                |                  | M12              | M16  | M20  | M24  |
|-----------------------|----------------|------------------|------------------|------|------|------|
| Ungerissener und geri | ssener Beton;  | Temperaturbereio | h I, II, III, IV |      |      |      |
| Verschiebung          | $\delta_{V0}$  | [mm/kN]          | 0,12             | 0,09 | 0,07 | 0,06 |
| Verschiebung          | δ <sub>V</sub> | [mm/kN]          | 0,18             | 0,14 | 0,11 | 0,09 |

<sup>&</sup>lt;sup>1)</sup> Ermittlung der Verschiebung für Bemessungslast Verschiebung für Kurzzeitbelastung =  $\delta_{V0} \cdot V_d / 1,4$  Verschiebung für Langzeitbelastung =  $\delta_{V\infty} \cdot V_d / 1,4$  ( $V_d$ : Bemessungswert der Querlast)

| fischer Superbond                                                    |             |
|----------------------------------------------------------------------|-------------|
| Leistungen Verschiebungen Betonstahl und fischer Bewehrungsanker FRA | Anhang C 10 |



Tabelle C19A: Charakteristische Werte für fischer Ankerstangen FIS A und RGM für die seismische Leistungskategorie C1 mit Mörtel FIS SB oder Patrone RSB im hammergebohrten Bohrloch

| Größe                                    |                                                                                                 |                        |                       |        |                           | M10      | M12     | M16   | M20 | M24 | M27 <sup>5)</sup> | M30  |  |  |  |  |
|------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------|-----------------------|--------|---------------------------|----------|---------|-------|-----|-----|-------------------|------|--|--|--|--|
| Charakteri                               | stische Zug                                                                                     | tragfä                 | higkei                | t, Sta | hlvers                    | agen     |         |       |     |     |                   |      |  |  |  |  |
|                                          | Verzinkter                                                                                      | Festigkeits-<br>klasse |                       | 5.8    | 19                        | 29       | 43      | 79    | 123 | 177 | 230               | 281  |  |  |  |  |
| N <sub>Rk,s,C1</sub>                     | Stahl                                                                                           |                        |                       | 8.8    | 30                        | 47       | 68      | 126   | 196 | 282 | 368               | 449  |  |  |  |  |
| [k <b>N]</b>                             | Nichtrosten                                                                                     | Festigkeits-           |                       | 50     | 19                        | 29       | 43      | 79    | 123 | 177 | 230               | 281  |  |  |  |  |
|                                          | der Stahl A4                                                                                    | Festig<br>  klasse     |                       | 70     | 26                        | 41       | 59      | 110   | 172 | 247 | 322               | 393  |  |  |  |  |
|                                          | und Stahl C                                                                                     |                        |                       | 80     | 30                        | 47       | 68      | 126   | 196 | 282 | 368               | 449  |  |  |  |  |
| Verzinkter                               |                                                                                                 | Festigkeits-           |                       | 5.8    | 1,50                      |          |         |       |     |     |                   |      |  |  |  |  |
| [-] der Sta                              | Stahl                                                                                           | klasse                 |                       | 8.8    | 1,50                      |          |         |       |     |     |                   |      |  |  |  |  |
|                                          | Nichtrosten<br>der Stahl A4                                                                     | <br>  Festigkeits-     |                       | 50     | 2,86                      |          |         |       |     |     |                   |      |  |  |  |  |
|                                          |                                                                                                 | klasse                 |                       | 70     | 1,50 <sup>2)</sup> / 1,87 |          |         |       |     |     |                   |      |  |  |  |  |
|                                          | und Stahl C                                                                                     |                        |                       | 80     | 1,6                       |          |         |       |     |     |                   |      |  |  |  |  |
|                                          | Charakteristische Verbundfestigkeit, kombiniertes Versagen durch Herausziehen und Betonausbruch |                        |                       |        |                           |          |         |       |     |     |                   | ruch |  |  |  |  |
| Temperatur-<br>bereich I <sup>3)</sup>   |                                                                                                 | $\tau_{\text{Rk,C1}}$  | [N/mr                 | n²]    | 4,6                       | 5,0      | 5,6     | 5,6   | 5,6 | 5,6 | 5,6               | 6,4  |  |  |  |  |
| Temperatur-<br>bereich II <sup>3)</sup>  |                                                                                                 | $\tau_{\text{Rk,C1}}$  | [N/mm²]               |        | 4,3                       | 4,6      | 5,6     | 5,6   | 5,6 | 5,6 | 5,3               | 6,0  |  |  |  |  |
| Temperatur-<br>bereich III <sup>3)</sup> |                                                                                                 | τ <sub>Rk,C1</sub>     | [N/mr                 | n²]    | 3,9                       | 4,3      | 4,9     | 4,9   | 4,9 | 4,9 | 4,5               | 5,1  |  |  |  |  |
| Temperatur-<br>bereich IV <sup>3)</sup>  |                                                                                                 | τ <sub>Rk,C1</sub>     | [N/mr                 | n²]    | 3,6                       | 3,9      | 4,5     | 4,5   | 4,5 | 4,5 | 4,1               | 4,7  |  |  |  |  |
|                                          | stische Que                                                                                     | rtragf                 | ähigke                | it, S  | ahlvers                   | sagen oh | ne Hebe | elarm |     |     |                   |      |  |  |  |  |
|                                          | Verzinkter                                                                                      | Festigkeits-<br>klasse |                       | 5.8    | 9                         | 15       | 21      | 39    | 61  | 89  | 115               | 141  |  |  |  |  |
| $V_{Rk,s,C1}^{-1)}$                      | Stahl                                                                                           |                        |                       | 8.8    | 15                        | 23       | 34      | 63    | 98  | 141 | 184               | 225  |  |  |  |  |
|                                          | Nichtrosten                                                                                     | F                      |                       | 50     | 9                         | 15       | 21      | 39    | 61  | 89  | 115               | 141  |  |  |  |  |
| [kN]                                     | der Stahl A4                                                                                    | restiç<br>klasse       | stigkeits- =<br>sse = |        | 13                        | 20       | 30      | 55    | 86  | 124 | 161               | 197  |  |  |  |  |
|                                          | und Stahl C                                                                                     |                        |                       | 80     | 15                        | 23       | 34      | 63    | 98  | 141 | 184               | 225  |  |  |  |  |

 $<sup>^{1)}</sup>$  Für fischer Ankerstangen FIS A / RGM beträgt der Duktilitätsfaktor für Stahl 1,0  $^{2)}$   $f_{uk}$  = 700 N/mm² ;  $f_{yk}$  = 560 N/mm²  $^{3)}$  Siehe Anhang B 2  $^{4)}$  Nur RSB  $^{5)}$  Nur FIS SB

fischer Superbond Anhang C 11 Leistungen Charakteristische Werte unter seismischer Einwirkung Leistungskategorie C1



Tabelle C19B: Charakteristische Werte für Standard Ankerstangen für die seismische Leistungskategorie C1 mit Mörtel FIS SB oder Patrone RSB im hammergebohrten Bohrloch

| Größe                |                                               |                    | M8       | M10       | M12     | M16      | M20 | M24 | M27 <sup>2)</sup> | M30 |     |  |
|----------------------|-----------------------------------------------|--------------------|----------|-----------|---------|----------|-----|-----|-------------------|-----|-----|--|
| Charakte             | eristische Zu                                 | gtragfähigke       | it, Stal | nlversage | en      |          |     |     |                   |     |     |  |
| Stahlver             | Siehe Tabelle C19A                            |                    |          |           |         |          |     |     |                   |     |     |  |
| kombini              | eristische Ve<br>ertes Versag<br>iehen und Be | Siehe Tabelle C19A |          |           |         |          |     |     |                   |     |     |  |
| Charakte             | eristische Qu                                 | ertragfähigk       | eit, Sta | thiversa  | gen ohn | e Hebela | rm  |     |                   |     |     |  |
|                      | Verzinkter                                    | Festigkeits-       | 5.8      | 6         | 11      | 15       | 27  | 43  | 62                | 81  | 99  |  |
| V <sub>Rk,s,C1</sub> | Stahl                                         | klasse             | 8.8      | 11        | 16      | 24       | 44  | 69  | 99                | 129 | 158 |  |
| 111,3,01             | Nichtrosten                                   | tahl Festigkeits-  | 50       | 6         | 11      | 15       | 27  | 43  | 62                | 81  | 99  |  |
| [kN]                 | N] der Stahl<br>A4 und                        |                    | 70       | 9         | 14      | 21       | 39  | 60  | 87                | 113 | 138 |  |
|                      | Stahl C                                       | Ma336 -            | 80       | 11        | 16      | 24       | 44  | 69  | 99                | 129 | 158 |  |

# Tabelle C20: Charakteristische Werte für Betonstähle für die seismische Leistungskategorie C1 mit Mörtel FIS SB im hammergebohrten Bohrloch

| Größe                                                                                                                        |                                                                  | Ø             | 8   | 10  | 12          | 14  | 16  | 20  | 25  | 28  | 32  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|-----|-----|-------------|-----|-----|-----|-----|-----|-----|--|--|
| Charakteristische Zugtragfähigkeit, Stahlversagen                                                                            |                                                                  |               |     |     |             |     |     |     |     |     |     |  |  |
| N <sub>Rk,s,C1</sub>                                                                                                         |                                                                  | [k <b>N</b> ] | 28  | 44  | 63          | 85  | 111 | 173 | 270 | 339 | 443 |  |  |
| Charakteristische Verbundfestigkeit, kombiniertes Versagen durch Herausziehen und Betonausbruch (trockener und nasser Beton) |                                                                  |               |     |     |             |     |     |     |     |     |     |  |  |
| Temperaturbereich I <sup>1)</sup>                                                                                            | $	au_{ m Rk,C1}$                                                 | [N/mm²]       | 3,2 | 4,3 | 4,5         | 4,5 | 5,3 | 4,5 | 4,5 | 4,5 | 5,1 |  |  |
| Temperaturbereich II <sup>1)</sup>                                                                                           | $	au_{Rk,C1}$                                                    | [N/mm²]       | 3,2 | 3,9 | <b>4</b> ,1 | 4,1 | 4,9 | 4,5 | 4,5 | 4,5 | 5,1 |  |  |
| Temperaturbereich III <sup>1)</sup>                                                                                          | $	au_{ m Rk,C1}$                                                 | [N/mm²]       | 2,8 | 3,6 | 3,8         | 3,8 | 4,5 | 4,1 | 4,1 | 4,1 | 4,7 |  |  |
| Temperaturbereich IV <sup>1)</sup>                                                                                           | τ <sub>Rk,C1</sub>                                               | [N/mm²]       | 2,5 | 3,2 | 3,4         | 3,4 | 4,1 | 3,8 | 3,8 | 3,8 | 4,3 |  |  |
| Charakteristische Que                                                                                                        | Charakteristische Quertragfähigkeit, Stahlversagen ohne Hebelarm |               |     |     |             |     |     |     |     |     |     |  |  |
| $V_{Rk,s,C1}$                                                                                                                |                                                                  | [kN]          | 10  | 15  | 22          | 30  | 39  | 61  | 95  | 119 | 155 |  |  |

<sup>&</sup>lt;sup>1)</sup> Siehe Anhang B 2 <sup>2)</sup> Nur FIS SB

fischer Superbond Anhang C 12 Leistungen Charakteristische Werte unter seismischer Einwirkung Leistungskategorie C1



**Tabelle C21:** Charakteristische Werte für fischer Ankerstangen FIS A, RGM und Standard Ankerstangen für die seismische Leistungskategorie C2 mit FIS SB im hammergebohrten Bohrloch

| Größe                |                                    |                         |               | M8    | M10               | M12      | M16      | M20      | M24         | M27            | M30   |
|----------------------|------------------------------------|-------------------------|---------------|-------|-------------------|----------|----------|----------|-------------|----------------|-------|
| Charakterist         | tische Zugtragfähig                | ıkeit, Stahlversager    | 1             |       |                   |          |          |          |             |                |       |
|                      | Marsinlatar Ctabl                  |                         | 5.8           |       |                   | 39       | 72       | 108      | 177         |                |       |
| N <sub>Rk,s,C2</sub> | Verzinkter Stahl                   | Festigkeitsklasse       | 8.8           |       |                   | 61       | 116      | 173      | 282         |                |       |
| [k <b>N</b> ]        | Nichtrostender                     |                         | 50            |       |                   | 39       | 72       | 108      | 177         |                |       |
|                      | Stahl A4                           | Festigkeitsklasse       | 70            |       |                   | 53       | 101      | 152      | 247         |                |       |
|                      | und Stahl C                        | C                       |               |       |                   | 61       | 116      | 173      | 282         |                |       |
| Charakteris          | tische Verbundfest                 | igkeit, kombinierte:    | s Vers        | sagen | durch             | Hera     | uszieh   | en un    | d Beto      | naust          | oruch |
| Temperaturbe         | reich I <sup>1)</sup>              | t <sub>Rk,C2</sub> [N/t | nm²]          |       |                   | 4,5      | 3,2      | 2,6      | 3,0         |                |       |
| Temperaturbe         |                                    |                         | 4,5           | 3,2   | 2,6               | 3,0      |          |          |             |                |       |
| Temperaturbe         | reich III <sup>1)</sup>            | r <sub>Rk,C2</sub> [N/r | nm²]          |       |                   | 3,9      | 2,7      | 2,3      | 2,6         |                |       |
| Temperaturbe         | reich IV <sup>1)</sup>             | r <sub>Rk,C2</sub> [N/r | nm²]          |       |                   | 3,6      | 2,5      | 2,1      | 2,4         |                |       |
|                      | δ <sub>N,(DLS)</sub> 3)            | [mm/(N/m                | nm²\1         |       | T                 | 0,09     | 0,10     | 0,11     | 0,12        | l              |       |
|                      | δ <sub>N,(ULS)</sub> 3)            |                         | [mm/(N/mm²)]  |       |                   |          | 0,17     | 0,17     | 0,18        |                |       |
|                      |                                    |                         |               |       |                   |          |          |          |             |                |       |
| Charakteris          | tische Quertragtani                | gkeit, Stahlversage     |               | ne He | <del>Delarn</del> |          |          | 140      |             |                | 1     |
| 2)                   | Verzinkter Stahl                   | Festigkeitsklasse       | 5.8<br>8.8    | -     | -                 | 14<br>22 | 27<br>44 | 43<br>69 | 62<br>99    | <del>  -</del> | -     |
| $V_{Rk,s,C2}^{2)}$   |                                    |                         |               | -     | -                 |          |          |          | <del></del> | -              | -     |
| [kN]                 | Nichtrostender                     | Footigksitektooss       | 50<br>70      | -     | -                 | 14<br>20 | 27<br>39 | 43<br>60 | 62<br>87    | <u> </u>       | -     |
| [ 4]                 | Stahl A4<br>und Stahl C            | Festigkeitsklasse 70    |               | -     | -                 | 20       | 44       | 69       | 99          | <del>  -</del> | -     |
|                      |                                    | 1                       | 00            | -     | •                 |          | 44       | 09       | 99          |                | -     |
|                      | δ <sub>V.(DLS)</sub> 4)            | [mn                     | 1/k <b>N]</b> | -     | -                 | 0,18     | 0,10     | 0,07     | 0,06        | -              | -     |
|                      | δ <sub>V,(ULS)</sub> <sup>4)</sup> |                         | 1/kN]         |       | ١.                | 0,25     | 0,14     | 0,11     | 0,09        | ١.             | ١.    |

<sup>&</sup>lt;sup>1)</sup> Siehe Anhang B 2

3) Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0\text{-Faktor}} \cdot \tau;$ 

 $\delta_{N\infty} = \delta_{N\infty\text{-Faktor}} \cdot \tau;$ 

<sup>4)</sup> Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0\text{-Faktor}} \cdot V;$ 

 $\delta_{V\infty} = \delta_{V\infty\text{-Faktor}} \cdot V;$ 

fischer Superbond

# Leistungen

Charakteristische Werte unter seismischer Einwirkung Leistungskategorie C2

Anhang C 13

<sup>&</sup>lt;sup>2)</sup> Für fischer Ankerstangen FIS A / RGM beträgt der Duktilitätsfaktor für Stahl 1,0