

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-10/0170 vom 28. April 2020

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Upat Ankerbolzen MAX, MAX R, MAX HCR

Mechanischer Dübel zur Verankerung im Beton

Upat Vertriebs GmbH Bebelstraße 11 79108 Freiburg im Breisgau DEUTSCHLAND

Upat

19 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-00-0601

ETA-10/0170 vom 26. November 2018

Europäische Technische Bewertung ETA-10/0170

Seite 2 von 19 | 28. April 2020

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-10/0170

Seite 3 von 19 | 28. April 2020

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Upat Ankerbolzen MAX ist ein Dübel aus galvanisch verzinktem Stahl (MAX) oder aus nichtrostendem Stahl (MAX R) oder aus hochkorrosionsbeständigem Stahl (MAX HCR), der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Die Produktbeschreibung ist in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäisch Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand unter Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang B 3, C 1
Charakteristischer Widerstand unter Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C 2
Verschiebungen (statische und quasi-statische Einwirkungen)	Siehe Anhang C 5
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Siehe Anhang C 4
Dauerhaftigkeit	Siehe Anhang B 1

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand	Siehe Anhang C 3

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330232-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

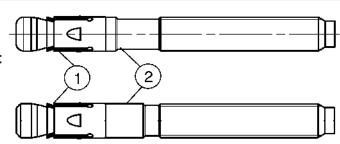
Folgendes System ist anzuwenden: 1

Europäische Technische Bewertung ETA-10/0170

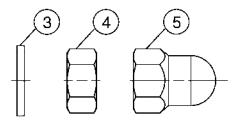
Seite 4 von 19 | 28. April 2020

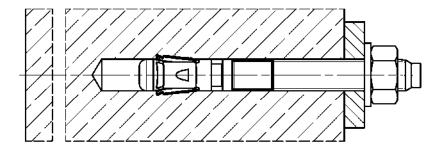
Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

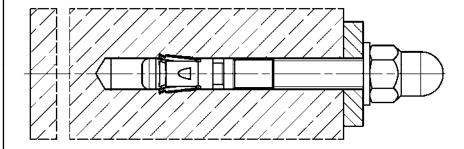
Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Kontrollplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 28. April 2020 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter


Beglaubigt: Baderschneider


Konusbolzen, kaltumgeformte Ausführung:

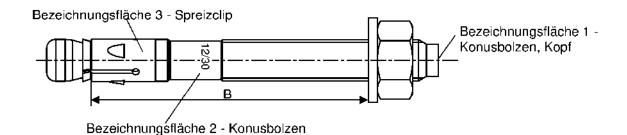


Konusbolzen, spanend hergestellt:

- ① Spreizclip
- ② Konusbolzen (kaltmassivumgeformt oder gedreht)
- ③ Unterlegscheibe
- Sechskantmutter
- ⑤ UPAT MAX Hutmutter

(Abbildungen nicht maßstäblich)

Upat Ankerbolzen MAX, MAX R, MAX HCR


Produktbeschreibung

Einbauzustand

Anhang A 1

Produktkennzeichnung und Buchstabenkürzel:

Produktkennzeichnung, Beispiel: MAX 12/30 R

Firmenkennung | Dübeltyp Gewindegröße / max. Dicke des Anbauteils (t_{fix})

Kennzeichnung R oder HCR auf Bezeichnungsfläche 2

MAX: Kohlenstoffstahl, galvanisch verzinkt

MAX R: nichtrostender Stahl

MAX HCR: hochkorrosionsbeständiger Stahl

Tabelle A2.1: Buchstabenkürzel auf Bezeichnungsfläche 1:

Markierui	ng	(a)	(b)	(c)	(d)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(l)	(K)
Max. t _{fix} 5 10 15 20			5	10	15	20	25	30	35	40	45	50			
	M6	-				45	50	55	60	65	70	75	80	85	90
	M8	40	45		-	50	55	60	65	70	75	80	85	90	95
	M10	45	50	55	60	65	70	75	80	85	90	95	100	105	110
B ≥ [mm]	M12	55	60	65	70	75	80	85	90	95	100	105	110	115	120
	M16	70	75	80	85	90	95	100	105	110	115	120	125	130	135
	M20						110	115	120	125	130	135	140	145	150
			_		130	135	140	145	150	155	160	165	170	175	

Markieru	ng	(L)	(M)	(N)	(O)	(P)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	(Y)	(Z)
Max. t _{fix}		60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M6	100	110	120	130	140	160	180	200	220	240	290	340	390	440
	M8	105	115	125	135	145	165	185	205	225	245	295	345	395	445
•	M10	120	130	140	150	160	180	200	220	240	260	310	360	410	460
B≥[mm]	M12	130	140	150	160	170	190	210	230	250	270	320	370	420	470
	M16	145	155	165	175	185	205	225	245	265	285	335	385	435	485
	M20	160	170	180	190	200	220	240	260	280	300	350	400	450	500
	M24	185	195	205	215	225	245	265	285	305	325	375	425	475	525

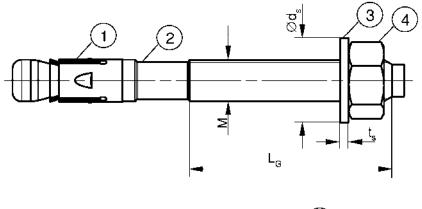
Berechung vorhandener her von eingebauten Ankern:

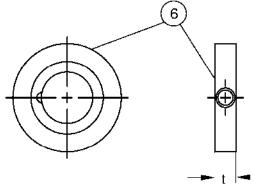
vorhandene hef = B_(gemäß Tabelle A2.1) - vorhandenes t_{fix}

Dicke des Anbauteils t_{fix} ist inklusive der Dicke der Befestigungsplatte t und z.B. der Dicke von Ausgleichsschichten t_{Mörtel} oder anderen nicht tragenden Schichten

(Abbildungen nicht maßstäblich)

Upat Ankerbolzen MAX, MAX R, MAX HCR


Produktbeschreibung


Produktkennzeichnung und Buchstabenkürzel

Anhang A 2

Produktabmessungen

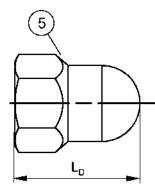


Tabelle A3.1: Abmessungen [mm]

l Tei⊩	Bezeichnung		MAX, MAX R, MAX HCR								
I ell	Dezelcimang			М6	M8	M10	M12	M16	M20	M24	
1	Spreizclip	Blech	Blechdicke		1,3	1,4	1,6	2,	4	3,0	
2	Konusbolzen	Gewi	ndegröße M	6	8	10	12	16	20	24	
	Konusboizen	L _G		10	19	26	31	40	50	57	
3	2 I Interior and decide a		≥	1,4		1,8	2,3	2,	7	3,7	
	Unterlegscheibe	Ø ds		11	15	19	23	29	36	43	
4 & 5	Sechskantmutter / Upat MAX	Schlü	sselweite	10	13	17	19	24	30	36	
5	Hutmutter	L _D	L _D ≥		- 22			33		-	
6	Upat Verfüllscheibe FFD	t	=			6		7	8	10	

(Abbildungen nicht maßstäblich)

Upat Ankerbolzen MAX, MAX R, MAX HCR

Produktbeschreibung

Abmessungen

Anhang A 3

Teil	Bezeichnung	Material
1	Spreizclip	Kaltband, EN 10139:2016 oder Edelstahl EN 10088:2014
2	Konusbolzen	Kaltstauchstahl oder Automatenstahl
3	Unterlegscheibe	Kaltband, EN 10139:2016
4	Sechskantmutter	Stahl, Festigkeitsklasse min. 8, EN ISO 898-2:2012

Tabelle A4.2: Materialien MAX R

Teil	Bezeichnung	Material
1	Spreizclip	
2	Konusbolzen	Edelstahl EN 10088:2014
3	Unterlegscheibe	
4	Sechskantmutter	Edelstahl EN 10088:2014; ISO 3506-2:2018; Festigkeitsklasse – min. 70

Tabelle A4.3: Materialien MAX HCR

Teil	Bezeichnung	Material
1	Spreizclip	Edelstahl EN 10088:2014
2	Kanusbalzen	Hochkorrosionsbeständiger Stahl EN 10088:2014
3	Unterlegscheibe	Hochkorrosionsbestandiger Statil EN 10066.2014
4	Sechskantmutter	Hochkorrosionsbeständiger Stahl EN 10088:2014; ISO 3506-2:2018; Festigkeitsklasse – min. 70

(Abbildungen nicht maßstäblich)

Upat Ankerbolzen MAX, MAX R, MAX HCR

Produktbeschreibung
Materialien

Anhang A 4

Spezifikation des Verwendungszweck Beanspruchung der Verankerung: MAX, MAX R, MAX HCR Größe M6 **M8** M12 M20 M24 M10 Statische und quasi-statische Belastungen Gerissener und ungerissener Beton Brandbeanspruchung C1 1 Seismische Einwirkung für Leistungskategorie C21) 1

Verankerungsgrund:

- Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern gemäß (gerissen und ungerissen) gemäß EN 206-1:2013+A1:2016
- Festigkeitsklassen C20/25 bis C50/60 gemäß EN 206-1:2013+A1:2016

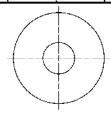
Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (MAX, MAX R, MAX HCR)
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (MAX R, MAX HCR)
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (MAX HCR)
 Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Meerwasser oder der Bereich der
 Spritzzone von Meerwasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer
 Verschmutzung (z.B. in Rauchgas Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet
 werden)

Bemessung:

- Die Bemessung der Verankerung erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs
- Unter Berücksichtigung der zu verankernden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. In den Konstruktionszeichnungen ist die Position der Dübel anzugeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.)
- Bemessung der Verankerungen erfolgt nach EN 1992-4:2018 und EOTA Technischer Report TR 055
- Anwendungen mit einer effektiven Verankerungstiefe h_{ef} < 40 mm sind auf statisch unbestimmte Bauteile beschränkt (z.B. leichte abgehängte Decken in trockenen Innenräumen) und über die ETA abgedeckt

Upat Ankerbolzen MAX, MAX R, MAX HCR	
Verwendungszweck Spezifikation	Anhang B 1


¹⁾ MAX HCR: Gilt nur für kaltmassivumgeformte Ausführung (gemäß Anhang A1)

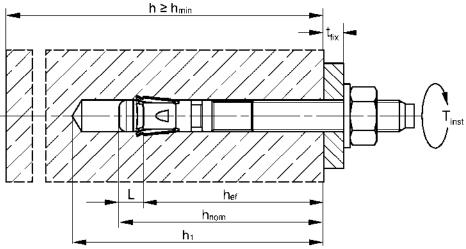


Tabelle B2.1: Montagekennwerte											
Cräte			MAX, MAX R, MAX HCR								
Größe			М6	M8	M10	M12	M16	M20	M24		
Nomineller Bohrdurchmesser	do=		6	8	10	12	16	20	24		
Maximaler Schneidendurchmesser mit Hammerbohrer oder Hohlbohrer	ى	[mm]	6,40	8,45	10.45	12,5	16,5	20,55	24,55		
Maximaler Schneidendurchmesser mit Diamantbohrer	- d cut,max		ı	8,15	10,45	12,25	16,45	20,50	24,40		
	h _{nom} ≥		46,5	44,5	52,0	63,5	82,5	120	148,5		
Gesamtlänge des Ankers im Beton	(L)		(6,5)	(9,5)	(12)	(13,5)	(17,5)	(20)	(23,5)		
		[mm]	Vorhandenes hef + L = h _{nom}								
Bohrlochtiefe am tiefsten Punkt	h₁ ≥				h _{nom} + 5			hnom	+ 10		
Durchmesser des Durchgangslochs im Anbauteil	dı ≤	[mm]	7	9	12	14	18	22	26		
Montagedrehmoment	T _{inst} =	[Nm]	8	20	45	60	110	200	270		
Überstand nachdem der Konusbolzen durchgeschlagen wurde (für Anwendung mit Upat Hutmutter gemäß Anhang B6)	O =	[mm]		-	12	16	20		-		

Setzlehre MAX SL-H für Anker mit Upat MAX Hutmutter:

hef = Effektive Verankerungstiefe

t_{fix} = Dicke des Anbauteils

h₁ = Bohrlochtiefe am tiefsten Punkt

h = Dicke des Betonbauteils

 $h_{\text{min}} = Minimale Dicke des Betonbauteils$ $<math>h_{\text{nom}} = Gesamtlänge des Ankers im Beton$

Tinst = Montagedrehmoment

(Abbildungen nicht maßstäblich)

Upat Ankerbolzen MAX, MAX R, MAX HCR

Verwendungszweck

Montageparameter

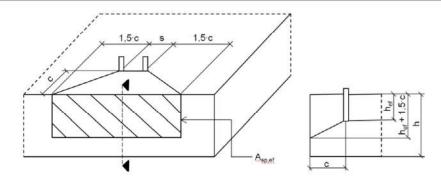
Anhang B 2

Tabelle B3.1: Mindestdicke de	er Beto	nbaute	ile, mi	nimale A	Achs- ur	nd Rand	abständ	е			
Größe			MAX, MAX R, MAX HCR								
			М6	M8	M10	M12	M16	M20	M24		
Minimaler Randabstand											
Ungerissener Beton	— Cmin		45	40	45	55	65	95	135		
Gerissener Beton	— Ciniin		70	40				85	100		
Zugehöriger Achsabstand	s	[mm]			gei	näß Anha	ang B4				
Minimale Dicke des Betonbauteils	h _{min}			80		100	140	160	200		
Dicke des Betonbauteils	h≥	'		max. {h _{mi}	_n ; h ₁ ¹⁾ + 3	max. $\{h_{min}; h_1^{(1)} + 2 \cdot d_0\}$					
Minimaler Achsabstand											
Ungerissener Beton	— Smin		35	40	40	50	65	95	100		
Gerissener Beton	— Smin		3	35	40	30	00	95	100		
Zugehöriger Randabstand	С	[mm]			ger	mäß Anha	ing B4				
Minimale Dicke des Betonbauteils	h_{min}			80		100	140	160	200		
Dicke des Betonbauteils	es Betonbauteils h≥			max. {h _{mi}	n; h ₁ 1) + 3	0}	max. $\{h_{min}; h_1^{(1)} + 2 \cdot d_o\}$				
Minimale Spaltfläche											
Ungerissener Beton	_ ^	[·1000	5,1	18	37	54	67	100	117,5		
Gerissener Beton	— A _{sp,req}	mm²]	1,5	12	27	40	50	77	87,5		

Spaltversagen für minimale Achs- und Randabstände in Abhängigkeit der effektiven Verankerungstiefe hef

Für die Berechnung des minimalen Achsabstands und des minimalen Randabstands der Anker in Kombination mit verschiedenen Einbindetiefen und -dicken des Betonbauteils ist die folgende Gleichung zu erfüllen:

$$A_{sp,req} < A_{sp,ef}$$


Asp,req = erforderliche Spaltfläche A_{sp,ef} = effektive Spaltfläche (gemäß Anhang B4)

Upat Ankerbolzen MAX, MAX R, MAX HCR	
Verwendungszweck Mindestdicke der Betonbauteile, minimale Achs- und Randabstände	Anhang B 3

¹⁾ h₁ gemäß Anhang B2

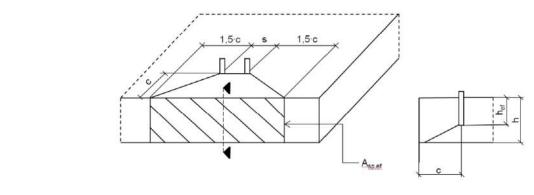


Tabelle B4.1: Effektive Spaltfläche A_{sp,ef} bei einer Betonbauteildicke h > h_{ef} + 1,5 ⋅ c und h ≥ h_{min}

Einzelanker und Ankergruppen mit	s > 3 · c	$A_{\text{sp.ef}} = (6 \cdot c) \cdot (h_{\text{ef}} + 1, 5 \cdot c)$	[mm²]	mit c ≥ c _{min}
Ankergruppen mit	s ≤ 3 · c	$A_{\text{sp.ef}} = (3 \cdot c + s) \cdot (h_{\text{ef}} + 1, 5 \cdot c)$	[mm²]	$mit \ c \geq c_{min} \ und \ s \geq s_{min}$

Tabelle B4.2: Effektive Spaltfläche A_{sp,ef} bei einer Betonbauteildicke h ≤ h_{ef} + 1,5 · c and h ≥ h_{min}

Einzelanker und Ankergruppen mit	s > 3 · c	A _{sp,ef} = 6 · c · vorhandenes h	[mm²]	mit c ≥ c _{min}
Ankergruppen mit	s≤3·c	$A_{sp,ef} = (3 \cdot c + s) \cdot vorhandenes h$	[mm²]	mit c ≥ c _{min} und s ≥ s _{min}

Randabstände und Achsabstände sind auf 5 mm zu runden

(Abbildungen nicht maßstäblich)

Upat Ankerbolzen MAX, MAX R, MAX HCR	
Verwendungszweck Mindestdicke der Betonbauteile, minimale Achs- und Randabstände	Anhang B 4

Montageanleitung:

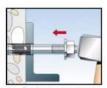
- · Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile Ausnahme: Upat MAX Hutmutter
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist, als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume
- Hammer-, Hohl- oder Diamantbohren gemäß Anhang B5
- Bohrloch senkrecht +/- 5° zur Oberfläche des Verankerungsgrundes erstellen, ohne die Bewehrung zu beschädigen
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt
- · Es ist darauf zu achten, dass im Falle eines Brandes keine lokalen Abplatzungen der Betondecke erfolgten
- Unter Erbebeneinfluß sind Abstandmontagen und Befestigungen durch nicht tragenden Schichten nicht erlaubt
- Bei Anwendungen unter Erdbebeneinfluss muss das Befestigungselement außerhalb kritischer Bereiche (z. B. plastischer Gelenke) der Betonstruktur angeordnet sein

Montageanleitung: Bohren und Bohrlochreinigung

Möglichkeiten von Bohren und Reinigung

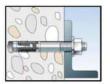
Moglichkeiten von Bonren und Reinigung							
Hammerbohrer	\$4400000000 	1: Bohrloch erstellen	2: Bohrloch reinigen				
		1. Domoch erstellen	z. bonnoch feinigen				
Hohlbohrer	Ī	1: Bohrloch erstellen mit Hohlbohrer und Staubsauger	-				
Diamantbohrer, nur bei Einwirkungen ohne Erdbeben- beanspruchung und ≥ Bohr Ø 8		1: Bohrloch erstellen	2: Bohrloch reinigen				

Upat Ankerbolzen MAX, MAX R, MAX HCR

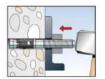

Verwendungszweck
Montageanleitung

Anhang B 5

Montageanleitung: Anker setzen

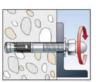

Sechskantmutter:

3: Anker setzen


4: Anker mit dem Montagedrehmoment T_{inst} verspreizen

5: Abgeschlossene Montage

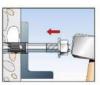
Upat MAX HUTMUTTER:


Möglichkeit 1: Durchsteckmontage mit Setzlehre SL-H:

3: Anker mit Setzlehre setzen

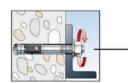
4: Überstand prüfen

5: Upat MAX Hutmutter aufdrehen



6: Anker mit dem Montagedrehmoment T_{inst} verspreizen

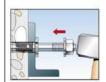
7: Abgeschlossene Montage


Möglichkeit 2: Durchsteckmontage mit Sechskantmutter:

3: Anker setzen

4: Position prüfen: Ein Gewindegang Überstand über die Mutter

4.1: Mutter entfernen


<u>Upat VERFÜLLSCHEIBE FFD optional z.B. bei Anwendungen unter Erdbebenbeanspruchung C2 oder zur Minimierung des Lochspiels:</u>

Der Ringspalt zwischen Bolzen und Anbauteil darf mit Mörtel verfüllt sein (Druckfestigkeit ≥ 50 N/mm² z.B. UPM 33) nach Schritt 7 (zur Minimierung des Lochspiels).

Optional Die Verfüllscheibe ist zusätzlich zur Standard-Unterlegscheibe

Die Verfüllscheibe ist zusätzlich zur Standard-Unterlegscheibe einzusetzen.

Die Dicke der Verfüllscheibe muss bei t_{fix} berücksichtigt werden. Senkung in der Verfüllscheibe zeigt in Richtung Anbauteil.

Upat Ankerbolzen MAX, MAX R, MAX HCR

Verwendungszweck Montageanleitung Anhang B 6

Z36138.20

Tabelle C1.1: Charakteristische Werte der **Zugtragfähigkeit** unter statischer und quasi - statischer Belastung

0.20	MAX, MAX R, MAX HCR									
Größe			М6	M8	3	M10	M12	M16	M20	M24
Stahlversagen										
Charakteristischer MAX		וואוז	7,6	16,	,6	28,3	43,2	67,0	123,3	176,7
Widerstand MAX R/HCR	- N _{Rk,s}	[kN]	11,4	17,	,0	29,0	44,3	70,6	124,9	183,6
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]					1,5			
Herausziehen										
Effektive Verankerungstiefe für Berechnung	h _{ef}	[mm]	40	35 - < 45	45	40 - 60	50 - 70	65 - 85	100	125
Charakteristischer Widerstand in gerissenem Beton C20/25	- N _{Rk,p}	[kN]	1,5	5,5	8	13	20	27,0	34,4	48,1
Charakteristischer Widerstand in ungerissenem Beton C20/25	ТЧНК,Р	[KIV]	10,5	14		20	22	38,6	49,2	68,8
	_	C25/30					1,12			
Evhährungsfalderen för Ni - för	_	C30/37	1,22							
Erhöhungsfaktoren für N _{Rk,p} für gerissenen und ungerissenen	Ψe ⁻	C35/45		1,32						
Beton	φε -	C40/50		1,41						
	_	C45/55	1,50							
		C50/60					1,58			
Montagesicherheitsbeiwert	γinst	[-]					1,0			
Betonbruch und Spaltversagen										
Faktor für ungerissenem Beton	k _{ucr,N}	[-]					11,02)			
Faktor für gerissenem Beton	k _{cr,N}	.,		7,72)						
Charakteristischer Achsabstand	Scr,N	[mm]	3 · h _{ef}							
Charakteristischer Randabstand	C _{Cr} ,N						1,5 · h _{ef}			
Achsabstand	Ser,sp						2 · c _{cr,sp}			
Randabstand bei h = 80				2,4·	1 _{ef}	2·h _{ef}	-			
Randabstand bei h = 100						2,4·h _{ef}	2∙h _{ef}		-	
Randabstand bei h = 120	C _{cr.sp}	[mm]	40				2,1·h _{ef}			
Randabstand bei h = 140	Oc.,5p		'	2·h	ef	1,9·h _{ef}				-
Randabstand bei h = 160						1,5 Her	1,5·h _{ef}	2∙h _{ef}	2,4·h _{ef} -	-
Randabstand bei h = 200									스, 크 Hội	2,2·h _{ef}
Charakteristischer Widerstand gegen Spalten	N ⁰ Rk,sp	[kN]				min {	Nº _{Rk,c} ; N	lek.p} ³⁾		

¹⁾ Sofern andere nationale Regelungen fehlen

Upat Ankerbolzen MAX, MAX R, MAX HCR	
Leistungen Charakteristische Zugtragfähigkeit	Anhang C 1

²⁾ Bezogen auf Betondruckfestigkeit als Zylinderdruckfestigkeit

³⁾ No_{Rk,c} nach EN 1992-4:2018

Tabelle C2.1: Charakteristische Werte der	Quertragfähigkeit unter statischer und quasi -
statischer Belastung	

0-20-		MAX, MAX R, MAX HCR							
Größe			M6	M8	M10	M12	M16	M20	M24
Stahlversagen ohne Hebelarm									
Charakteristischer Widerstand MAX	V^0_Rk,s	[LAN]]	5,9	13,6	21,4	30,6	55,0	81,4	110,1
MAX R/HCR	V Rk,s	[kN]	8,8	16,8	26,5	38,3	69,8	106,3	148,5
Teilsicherheitsbeiwert	$\gamma \rm Ms^{1)}$	r 1				1,25			
Faktor für Duktilität	k ₇	[-]				1,0			
Stahlversagen mit Hebelarm und Pryoutversag	en								
Effektive Verankerungstiefe für Berechnung	h _{ef}	[mm]	40	45	60	70	85	100	125
Charaktariatinahaa Biagamamant MAX	− M ^o _{Rk,s}	[Nm]	11,4	26	52	92	233	513	865
Charakteristisches Biegemoment MAX R/HCR			10,7	29	59	100	256	519	898
Faktor für Pryoutversagen	k ₈	[-]	2,6	2,8	3	,2	3,0	2,6	2,4
Effektive Verankerungstiefe für Berechnung	h _{ei}	[mm]		35 - < 45	40 - < 60	50 - < 70	65 - < 85		
MAX			_	20	44	92	184		_
Charakteristisches Biegemoment MAX R/HCR	- M ⁰ Rk,s	[Nm]		21	45	100	193		
Faktor für Pryoutversagen	k ₈	[-]		2,5	2,6	3,1	3,2		
Teilsicherheitsbeiwert	γMs ¹⁾	r 1				1,25			
Faktor für Duktilität	k ₇	[-]				1,0			
Betonkantenbruch									
Effektive Verankerungstiefe für Berechnung	$I_{f} =$	[mm]				h _{ef}			
Dübeldurchmesser	dnom	-	6	8	10	12	16	20	24

¹⁾ Sofern andere nationale Regelungen fehlen

Upat Ankerbolzen MAX, MAX R, MAX HCR	
Leistungen Charakteristische Quertragfähigkeit	Anhang C 2

Tabelle C3.1: Charakteristische Werte der Zugtragfähigkeit unter Brandbeanspruchung										
Größe				MAX, MAX R, MAX HCR						
Grobe				M6	M8	M10	M12	M16	M20	M24
		h _{ef} ≥	[mm]	40	35 / 45	40 / 60	50 / 70	65 / 85	100	125
Observation Contraction	_	R30		$0.6^{(1)} / 0.9^{(2)}$	1,4	2,8	5,0	9,4	14,7	21,1
Charakteristischer	N _{Rk.s,fi} -	R60		$0,4^{1)} / 0,9^{2)}$	1,2	2,3	4,1	7,7	12,0	17,3
Widerstand Stahlversagen		R90		$0.3^{1)} / 0.9^{2)}$	0,9	1,9	3,2	6,0	9,4	13,5
Staniversagen		R120		$0,2^{1)} / 0,7^{2)}$	0,8	1,6	2,8	5,2	8,1	11,6
Charakteristischer Widerstand	Nek.c,fi _	R30 - R90	[kN]		7,7 ·	h _{ef} 1,5 · (20)) ^{0,5} · h _{ef} / :	200 / 1000		
Betonbruch		R120		7,7 · h _{ef} ^{1,5} · (20) ^{0,5} · h _{ef} / 200 / 1000 · 0,8						
Charakteristischer Widerstand Herausziehen	N _{Rk.p.fi} -	R30 R60 R90		0,4	0,9 / 2,0 0,8 / 2,0 0,5 / 2,0	2,2 / 3,3	3,0 / 5,0	4,5 / 6,8	8,6	12,0
nerauszierien	_	R120		0,3	0,3 / 1,6	1,7 / 2,6	2,4 / 4,0	3,6 / 5,4	6,9	9,6

Tabelle C3.2: Charakteristische Werte der Quertragfähigkeit unter Brandbeanspruchung

Größe MAX, MAX R, MAX HCR			R	30	R60		
			V _{Rk,s,fi,30} [kN]	M ⁰ Rk,s,fi,30 [Nm]	$V_{Rk,s,fi,60}$ [kN]	М ⁰ _{Rk,s,fi,60} [Nm]	
M6		40	$0,6^{1)}/0,9^{2)}$	0,51) / 0,22)	$0,4^{11}/0,9^{21}$	0,31) / 0,12)	
M8		35	1,8	1,4	1,6	1,2	
M10		40	3	,6	2,9	3,0	
M12	h _{ef} ≥	50	6,3	7,8	4,9	6,4	
M16		65	11,7	19,9	9,1	16,3	
M20	_	100	18,2	39,0	14,2	31,8	
M24		125	26,3	67,3	20,5	55,0	

(Größe	· · · · · · · · · · · · · · · · · · ·			R120				
MAX, MAX	(R, MA)	KHCR	V _{Rk,s,fi,90} [kN]	M ⁰ Rk,s,fi,90 [Nm]	V _{Rk,s,fi,120} [kN]	M ⁰ Rk,s,fi,120 [Nm]			
M6		40	$0,3^{1)}/0,9^{2)}$	0,21) / 0,12)	$0,2^{1)}/0,7^{2)}$	0,21) / 0,12)			
M8		35	1,3	1,0	1,2	0,8			
M10		40	2,2	2,4	1,9	2,1			
M12	h _{ef} ≥	50	3,5	5,0	2,8	4,3			
M16		65	6,6	12,6	5,3	11,0			
M20		100	10,3	24,6	8,3	21,4			
M24]	125	14,8	42,6	11,9	37,0			

Pryoutversagen gemäß EN 1992-4:2018

Tabelle C3.3: Minimale Achsabstände und minimale Randabstände für Anker unter Brandbeanspruchung für Zug- und Quertragfähigkeit

Größe			MAX, MAX R, MAX HCR										
Grobe			M6	М8	M10	M12	M16	M20	M24				
Achsabstand	Smin			Anhang B3									
Randabstand	^ .	[mm]	$c_{min} = 2 \cdot h_{ef},$										
Haridabstand	Cmin		bei mehrseitiger Brandbeanspruchung c _{min} ≥ 300 mm										
4)									·				

1) MAX

2) MAX R / HCR

Upat Ankerbolzen MAX, MAX R, MAX HCR

Leistungen

Charakteristische Werte unter Brandbeanspruchung

Anhang C 3

Tabelle C4.1: Charakteristische Werte der Zug- und Quertragfähigkeit unte	er
Erdbebenbeanspruchung C1	

0.80.					MAX, M	AX R, M.	AX HCR	l I	
Größe			М6	M8	M10	M12	M16	M20	M24
Dübellänge	L _{max}			167	186	221	285	394	477
Effektive Verankerungstiefe	her	[mm]	-	45	40 - 60	50 - 70	65 - 85	100	125
Mit Ringspaltverfüllung	Сtgap	[-]	1,0						
Stahlversagen									
Charakteristische Zugtragfähigkeit C1	$N_{\text{Rk,s,C1}}$	[kN]		16,0	27,0	41,0	66,0	111,0	150,0
Teilsicherheitsbeiwert	γMs,C1 ¹⁾	[-]	-			1,	,5		
Herausziehen									
Charakteristische Zugtragfähigkeit in gerissenem Beton C 1	$N_{\text{Rk},p,C1}$	[kN]	1	4,6	8,0	16,0	28,2	36,0	50,3
Montagesicherheitsbeiwert	γinst	[-]		1,0					
Stahlversagen ohne Hebelarm									
Charakteristische Quertragfähigkeit C1	V _{Rk,s,C1}	[kN]		11	17	27	47	56	69
Teilsicherheitsbeiwert	γMs,C1 ¹⁾	[-]	-			1,:	25		

¹⁾ Sofern andere nationale Regelungen fehlen

Table C4.2: Charakteristische Werte der Zug- und Quertragfähigkeit unter Erdbebenbeanspruchung C2

C+*0-			MAX, MAX R, MAX HCR "							
Größe			М6	M8	M10	M12	M16	M20	M24	
Dübellänge	L _{max}	[mm]		-	186	221	285	394	-	
Mit Ringspaltverfüllung	$lpha_{ extsf{gap}}$	[-]				1,0				
Stahlversagen										
Charakteristische Zugtragfähigkeit C2	$N_{\text{Rk,s,C2}}$	[kN]			27	41	66	111		
Teilsicherheitsbeiwert	γ Ms,C2 $^{2)}$	[-]		-		1	,5		-	
Herausziehen										
	h _{ef}	[mm]			60	70	85	100		
Charakteristische Zugtragfähigkeit in	$N_{\text{Rk},p,C2}$	[kN]			5,1	7,4	21,5	30,7	-	
gerissenem Beton C2	h _{ef}	[mm]		-	40-59	50-69	65-84			
	$N_{Rk,p,C2}$	[kN]			2,7	4,4	16,4	•	•	
Montagesicherheitsbeiwert	γinst	[-]				1,0				
Stahlversagen ohne Hebelarm										
	h _{ef}	[mm]			60	70	85	100		
Charaktariatiaaha Ousartra efiliakait CO	V _{Rk,s,C2}	[kN]			10,0	17,4	27,5	39,9	-	
Charakteristische Quertragfähigkeit C2	hef	[mm]		•	40-59	50-69	65-84			
	V _{Rk,s,C2}	[kN]			7,0	12,7	22,0		•	
Teilsicherheitsbeiwert	у́Мs,С2 ²⁾	[-]		•	•	1,25	•	•		

¹⁾ MAX HCR: Gilt nur für kaltmassivumgeformte Ausführung (gemäß Anhang A1)

²⁾ Sofern andere nationale Regelungen fehlen

Upat Ankerbolzen MAX, MAX R, MAX HCR	
Leistungen Charakteristische Werte von Zug und Querwiderständen unter Erdbebeneinfluss	Anhang C 4

Tabelle C5.1:	: Verschiebungen	ı unter statischer	' und quasi -	statischer Zuglast

Größe			MAX, MAX R, MAX HCR							
Grobe			М6	M8	M10	M12	M16	M20	M24	
Verschiebungen – Faktor für Zuglast ¹⁾										
δ _{N0} - Faktor	In gariaganam Patan		0,13	0,22	0,12	0,09	0,08	0,07	0,05	
δN∞ - Faktor	In gerissenem Beton	m/kN] -	1,00	0,78	0,40	0,19	0,	09	0,07	
δN0 - Faktor	•		0,16	0,07	0,05	0,	06	0,05	0,04	
δN∞ - Faktor	In ungerissenem Beton		0,24	0,29	0,21	0,14	0,10	0,06	0,05	

Tabelle C5.2: Verschiebungen unter statischer und quasi - statischer Querlast

Größe			MAX						
Grobe	Chobe			M8	M10	M12	M16	M20	M24
Verschiebungen – F	aktor für Querlast ²⁾								
δvo - Faktor			0,6	0,35	0,37	0,27	0,10	0,09	0,07
δ∨∞ - Faktor	In gerissenem und ungerissenem Beton		0,9	0,52	0,55	0,55 0,40	0,14	0,15	0,11
		[mm/kN]	MAX R, MAX HCR						
δvo Faktor			0,6	0,23	0,19	0,18	0,10	0,11	0,07
δ√∞ - Faktor			0,9	0,27	0,22	0,16	0,11	0,05	0,09

¹⁾ Berechnung der effektiven Verschiebung:

 $\delta_{\text{N0}} = \delta_{\text{N0}} - \text{Faktor} + N_{\text{ED}}$

 $\delta_{N\infty} = \delta_{N\infty - Faktor} \cdot N_{ED}$

(NED: Bemessungswert der vorhandenen Zuglast)

2) Berechnung der effektiven Verschiebung:

 $\delta_{V0} = \delta_{V0 \, - \, Faktor} \, \cdot \, V_{ED}$

 $\delta_{V\infty} = \delta_{V\infty - \text{ Faktor }} \cdot V_{\text{ED}}$

(VED: Bemessungswert der vorhandenen Querlast)

Tabelle C5.3: Verschiebungen unter Zuglast C2 für alle Verankerungstiefen

Größe			MAX, MAX R, MAX HCR						
Grobe			М6	M8	M10	M12	M16	M20	M24
Verschiebungen DLS	δN,G2(DLS)	(mm)			2,7	4.	,4	5,6	
Verschiebungen ULS	δN,C2 (ULS)	[mm]		-		13,0	12,3	14,4	-

Tabelle C5.4: Verschiebungen unter Querlast C2 für alle Verankerungstiefen

Werschiebungen DLS δ _{V,C2 (DLS)} [mm] - 4,1 4,7 5,5 4,8	Größe			MAX, MAX R, MAX HCR						
[mm] -				М6	M8	M10	M12	M16	M20	M24
	Verschiebungen DLS	δv,c2 (DLS)	[mana]			4,1	4,7	5,5	4,8	
Verschiebungen ULS $\delta_{V,C2}$ (ULS) $\delta_{V,C2}$ (ULS) $\delta_{V,C2}$ (ULS) $\delta_{V,C2}$ (ULS)	Verschiebungen ULS	δv.c2 (ULS)	լւուույ	-		6,2	7,8	10,1	11,2	-

Upat Ankerbolzen MAX, MAX R, MAX HCR

Leistungen

Verschiebungen unter Zug und Querlast

Anhang C 5